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Chapter 1 Introduction 

Recent analysis tools research efforts, such as the Integrated Corridor Management (ICM) Analysis, 
Modeling, and Simulation (AMS) project, Strategic Highway Research Program (SHRP) 2 C10 
project, and SHRP2 L08 project, have demonstrated that the capability for existing AMS tools to 
properly reflect the impacts of a proactive management approach on driver behavior through the full 
trip chain is limited. The trip chain here refers to the full range of decisions made by travelers, such as 
destination choice, time-of-day choice, mode choice, route choice, and facility/lane choice. Detailed 
simulation tools (meso or micro) are required when modeling the tactical portions of the trip chain 
(facility/lane choice), which requires modeling behaviors, such as merging, lane changing, and car 
following). 
 
Current approaches to develop, calibrate, and validate simulation tools are based on time-consuming 
approaches that use aggregate-level field data, such as 5- or 15-minute averages of fixed-point loop 
detector data. Many efforts undertaken by the U.S. Department of Transportation (USDOT), such as 
the Basic Safety Message (BSM) Emulator project, Surrogate Safety Assessment Model (SSAM) 
development, and the ATDM/Dynamic Mobility Applications (DMA) AMS Testbed Development and 
Evaluation project, rely on trajectory data from microsimulation models. Microsimulation models, while 
simulating the detailed position (trajectories) of vehicles on a subsecond level, are for the most part 
not validated at that level. Even though the algorithms embedded in these models were developed 
based on vehicle trajectories, they have been validated at the aggregate performance measure level. 
Much more accurate AMS tools can be developed if validated based on detailed vehicle trajectory 
data over a variety of operational conditions (e.g., work zones, incidents, adverse weather, special 
events) to capture reliability measures in the base condition and with ATDM/DMA Operational 
Strategies utilized. 
 
In this project, in a timeframe of 20 months, the project team will: 

• Compile existing publicly available vehicle trajectory datasets. 

• Collect a limited amount of new trajectory data. 

• Develop a trajectory-level validation process/methodology. 

• Develop a trajectory validation computational engine. 

• Complete a Proof of Concept application using the computational engine to 
demonstrate the validation process. 
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This state of the practice review is a literature and industry review of existing vehicle trajectory 
datasets, vehicle collection methods and tools, and traffic simulation model validation methods and 
tools. In addition to a literature review spanning transportation, artificial intelligence (moving object 
detection), and computer science, we have conducted a number of interviews with the project 
stakeholders and embedded their suggestions and insights through this document. This report has the 
following four sections and presents the current state of the practice, as well as advances and 
knowledge gaps in trajectory validation, a novel field: 

• In the first section, we have identified existing vehicle trajectory datasets; and we 
have categorized them by source, purpose, and relevance to this project among 
other typologies. The Generation SIMulation (NGSIM) datasets, in combination with 
the Naturalistic Driving Study (NDS) data that will become available in early 2015, 
contain a wealth of information that can significantly advance our knowledge of car-
following and lane-changing behavior. 

• In the second section, we describe existing vehicle trajectory collection methods and 
tools, as well as innovative trajectory collection methods from industries beyond 
transportation. Even though video detection has seen significant advances in the last 
10 years and it is ready for commercial applications, project research indicates that it 
has a barrier of entry that cannot be met in this project given the available resources 
and the required data accuracy. Recent advances in global positioning system (GPS) 
technology allow us to conduct extended floating car studies with similar or better 
accuracy than NGSIM at a relative low cost per vehicle, allowing us to record driver 
behavior and lane selections over long paths from origin to destination. 

• In the third section, we present validation processes and tools, computational 
engines, and spreadsheet-based tools developed for the purpose of validating traffic-
simulation models at both aggregate and disaggregate levels. We document indepth 
two trajectory-based tools that supported recent SHRP 2 reliability projects, and we 
identify the elements of which that are relevant to this project. Furthermore, we 
present aggregate and disaggregate computational engines that Cambridge 
Systematics and others have developed to mine trajectory data at different temporal 
resolutions. 

• In the final fourth section, we document validation efforts, cases where simulation 
models, algorithms, and logic have been validated at the disaggregate level. We 
discuss the different measures that have been used to compare trajectories in car-
following trajectory-based calibration studies. We present important properties of 
simulation algorithms that increase model realism and the capability of AMS tools to 
properly reflect the impacts of a proactive management. Finally, we provide insights 
on the proper time-step necessary for trajectory comparisons, and we examine how 
the objective function used for trajectory validation is affected by small changes in 
car-following model parameters. 
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Chapter 2 Existing Vehicle Trajectory 
Datasets 

In this section, we present research findings on available trajectory datasets in the U.S. and abroad 
categorized by source, location, duration, application, resolution, detection, sample size, and lane-
changing information. Below, we provide a summary of the findings on the researched datasets with 
an overall assessment about their relevance to this study.  
 
Based on the research conducted, the NGSIM family of datasets, despite being collected almost 
10 years ago, is the most information-rich trajectory datasets available. Several stakeholders and 
project partners indicated that the NGSIM datasets have not been fully mined, especially for the 
purposes of this project. Despite of their overall high accuracy levels, as low as a few feet, many 
researchers have indicated in the past that NGSIM data contain outliers that limit their full utilization for 
some applications. However, based on prior research and for the purpose of trajectory validation, 
outliers in the calculation of speed and acceleration do not play as important a role as initially 
anticipated. For example, recent research by Dr. Treiber has demonstrated that applying smoothing 
techniques to trajectories to remove outliers does not improve the performance of a car-following 
model fitted to the data. Furthermore, careful selection of a trajectory similarity objective function 
further eliminates the influence of unrealistic observations. Therefore, before embarking on resource-
intensive and elaborate smoothing techniques on the NGSIM dataset, the project team will investigate 
simple and efficient alternatives, such as reducing the sampling rate to one second, provided that 
resolution reduction does not limit our analysis. 
 
The second primary dataset with a high potential for this study is the Naturalistic Driving Dataset 
(NDS) collected under SHRP2 in the course of several years up to 2013. NDS, for the purpose of this 
project, contains extended floating car data that include the position of a vehicle and the positions of 
close-by vehicles (up to eight) via a forward-facing radar. All data processing and preparation tasks 
are scheduled to be completed by the end of 2014, after which data will become available to the 
public. In addition to the GPS and radar information, NDS-equipped cars carry a forward- and a rear-
facing camera and record speed, acceleration, and steering wheel angle from in-vehicle sensors. 
Virginia Tech has developed a lane-detection algorithm that measures the lateral position of a vehicle 
inside its own lane, and already has run the algorithm on all the video collected from the forward-
facing camera. Regardless of the accuracy of the automatic-lane detection results, which are still 
under investigation, it is within the means of the project team to manually determine lane location for 
10,000 vehicle miles of collected data, a value that is higher than the 2.5 thousand vehicle miles in the 
I-80 NGSIM dataset. The addition of lane information will help us calculate aggregate measures about 
lane changing, such as the number of mandatory and discretionary lane changes per mile under 
different conditions. Information on the speed and acceleration coming from the vehicle sensors can 
augment the GPS data to improve location accuracy. 
 
Overall, even without lane detection, NDS contains the type of extended floating car data for which 
many car-following calibration studies have relied on in the past. Obtaining vehicle positions behind a 
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vehicle prior to a lane change would be desirable, but the video from the rear-facing camera is not of 
high quality and may not be used to identify accurately enough the positions and speed of the 
following vehicles. Overall, NDS is by any means an enormous dataset containing data from 
2,600 instrumented vehicles traversing 3,700 vehicle-years (1.5 years of data for each vehicle). 
Because of its size and coverage of different cities, NDS is an excellent source for studying intradriver 
variations of behavior, and how driver behavior changes by time of day, weather, incident, or other 
factors, as well as interdriver variations between drivers of the same or different cities. The dataset is 
new and it has not been used in any transportation research studies. As a result, additional resources 
may be needed on processing and cleaning parts of it. 
 
In table 2-1, we present a summary of available datasets that could be useful in this study, along with 
our assessment of the relevance of each investigated dataset to the objectives of this project. All the 
datasets, except the NGSIM or NDS ones, are considered of low relevance for various reasons that 
are explained in detail for each dataset in tables 2-2 through 2-18. A dataset is deemed of high 
relevance to this study if it contains trajectories for 100 percent of the vehicles with a positional 
accuracy of a few feet. The NDS is considered of high relevance because it can be used to study car 
following in different cities and for different weather, time-of-day, and incident conditions. 
 

Table 2-1. Trajectory datasets. 

Dataset Relevance 
NGSIM Datasets  

US 101 – Los Angeles, California High 

I-80 – Bay Area, California High 

Lankershim Boulevard – Los Angeles, California High 

Peachtree Street – Atlanta, Georgia High 
Other U.S. Datasets  

SHRP2 NDS High 

I-80 Prototype Dataset Low 

Washington County, Minnesota Low 

Tucson, Arizona Low 

System for Assessment of the Vehicle Motion Environment (SAVME) Low 

JHK Dataset – Los Angeles, California, and Washington, D.C. Low 

University of Florida Low 

Ohio State Low 
International Datasets  

BOSCH Dataset – Germany Low 

MOCoPo (PREDIT, French DOT) – France Low 

University of Napoli – Italy Low 

Israel Driving Simulator – Israel Low 

Hokkaido Test Track – Japan Low 

Utrecht A2 Motorway – The Netherlands Low 



Chapter 2 Existing Vehicle Trajectory Datasets 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology  
Intelligent Transportation Systems Joint Program Office 

ATDM Trajectory-Level Validation—State of the Practice—Final Report | 5 

Table 2-2. Next Generation Simulation, US 101. 

Source: http://www.fhwa.dot.gov/publications/research/operations/07030/07030.pdf 
http://arxiv.org/pdf/0804.0108.pdf 
http://www.webpages.uidaho.edu/niatt/Internal/directors_notes/UIdaho%200406_NGSIM%20
and%20Simulation_JColyar.pdf 
http://www.researchgate.net/publication/228450500_Video-Based_Vehicle_Trajectory_
Data_Collection 
http://trid.trb.org/view.aspx?id=882483 

Date:  June 15, 2005 

Location: 2,100-foot section of US 101 Southbound in Los Angeles, California 

Duration: 45 minutes, segmented into three 15-minute periods 

Application: Freeway weaving sections, freeway-lane selection, lane changing at a freeway merge and 
across a weaving section, and development of new driver behavior algorithms 

Resolution: 10 hertz (Hz) 

Detection: Video camera atop a 35-story building. The NG-VIDEO software was used to produce the 
trajectories of all vehicles. 

Sample size: 6,101 vehicles 

Lane changing: Determined by trajectory path of subject vehicle 

Other traffic: Trajectories are available for the full-traffic stream 

Relevance: High 

Notes: Additional video was collected (seven hours in the p.m. peak for the northbound direction, and 
five hours in each peak period for the southbound direction), but was not processed. 

 

http://www.fhwa.dot.gov/publications/research/operations/07030/07030.pdf
http://arxiv.org/pdf/0804.0108.pdf
http://www.webpages.uidaho.edu/niatt/Internal/directors_notes/UIdaho%200406_NGSIM%20and%20Simulation_JColyar.pdf
http://www.webpages.uidaho.edu/niatt/Internal/directors_notes/UIdaho%200406_NGSIM%20and%20Simulation_JColyar.pdf
http://www.researchgate.net/publication/228450500_Video-Based_Vehicle_Trajectory_%E2%80%8CData_Collection
http://www.researchgate.net/publication/228450500_Video-Based_Vehicle_Trajectory_%E2%80%8CData_Collection
http://trid.trb.org/view.aspx?id=882483
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Table 2-3. Next Generation Simulation, I-80. 

Source: http://www.fhwa.dot.gov/publications/research/operations/06137/06137.pdf  
http://arxiv.org/pdf/0804.0108.pdf  
http://www.webpages.uidaho.edu/niatt/Internal/directors_notes/UIdaho%200406_NGSIM%
20and%20Simulation_JColyar.pdf  
http://www.researchgate.net/publication/228450500_Video-Based_Vehicle_Trajectory_
Data_Collection  
http://trid.trb.org/view.aspx?id=882483  

Date: April 2005 

Location: 500-meter section of Interstate 80 in Emeryville, California 

Duration: Three 15-minute intervals 

Application: Freeway-Lane Selection, Cooperative Merging, Oversaturated Freeway Modeling 

Resolution: 10 Hz 

Detection: Video detection 

Sample size: 5,648 vehicles 

Lane changing: Determined by trajectory path of subject vehicle 

Other traffic: Trajectories are available for the full-traffic stream 

Relevance: High 

Notes: Additional video was collected (five hours in the a.m. peak and five hours in the p.m. peak) 
for both directions, but was not processed. 

 

http://www.fhwa.dot.gov/publications/research/operations/06137/06137.pdf
http://arxiv.org/pdf/0804.0108.pdf
http://www.webpages.uidaho.edu/niatt/Internal/directors_notes/UIdaho%200406_NGSIM%20and%20Simulation_JColyar.pdf
http://www.webpages.uidaho.edu/niatt/Internal/directors_notes/UIdaho%200406_NGSIM%20and%20Simulation_JColyar.pdf
http://www.researchgate.net/publication/228450500_Video-Based_Vehicle_Trajectory_%E2%80%8CData_Collection
http://www.researchgate.net/publication/228450500_Video-Based_Vehicle_Trajectory_%E2%80%8CData_Collection
http://trid.trb.org/view.aspx?id=882483
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Table 2-4. Next Generation Simulation, Lankershim Boulevard. 

Source: http://www.webpages.uidaho.edu/niatt/Internal/directors_notes/UIdaho%200406_
NGSIM%20and%20Simulation_JColyar.pdf  
http://www.researchgate.net/publication/228450500_Video-Based_Vehicle_Trajectory_
Data_Collection  
http://www.fhwa.dot.gov/publications/research/operations/07029/07029.pdf 
http://trid.trb.org/view.aspx?id=882483  

Date: June 16, 2005 

Location: 500-meter section of Lankershim Boulevard (three- to four-lane arterial) with four signalized 
intersections north of US 101 in Los Angeles, California 

Duration: 30 minutes in both directions during the a.m. peak 

Application: Arterial-lane selection and driver behavior 

Resolution: 10 Hz 

Detection: Five video cameras mounted on the roof of a 36-story building 

Sample size: Approximately 2,450 

Lane changing: Determined by trajectory path of subject vehicle 

Other traffic: Trajectories are available for the full-traffic stream 

Relevance: High 

Notes: Additional video was collected (five hours in the a.m. peak and five hours in the p.m. peak) 
for both directions, but was not processed. 

http://www.webpages.uidaho.edu/niatt/Internal/directors_notes/UIdaho%200406_NGSIM%20and%20Simulation_JColyar.pdf
http://www.webpages.uidaho.edu/niatt/Internal/directors_notes/UIdaho%200406_NGSIM%20and%20Simulation_JColyar.pdf
http://www.researchgate.net/publication/228450500_Video-Based_Vehicle_Trajectory_%E2%80%8CData_Collection
http://www.researchgate.net/publication/228450500_Video-Based_Vehicle_Trajectory_%E2%80%8CData_Collection
http://www.fhwa.dot.gov/publications/research/operations/07029/07029.pdf
http://trid.trb.org/view.aspx?id=882483
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Table 2-5. Next Generation Simulation, Peachtree Street. 

Source: http://www.entpe.fr/content/download/3451/21866/file/09-3831.pdf  
http://www.webpages.uidaho.edu/niatt/research/final_reports/klk712_n10-07.pdf  
http://ce571f2013.weebly.com/uploads/1/0/2/4/10249279/data-analysis-report-0400pm-
0415pm.pdf  
http://trid.trb.org/view.aspx?id=882483  

Date: November 8, 2006 

Location: 2,100-foot segment of Peachtree Street in Atlanta, Georgia, with four signalized 
intersections and one unsignalized intersection 

Duration: 30 minutes; collected between 12:45 p.m. and 1:00 p.m. and between 4:00 p.m. and 
4:15 p.m. 

Application: Arterial-lane selection 

Resolution: 10 Hz 

Detection: These data were collected using eight video cameras mounted on a 30-story building, which 
is located at 1100 Peachtree Street NE, Atlanta, Georgia. 

Sample size: 2,337 vehicles 

Lane changing: Determined by trajectory path of subject vehicle 

Other traffic: Trajectories are available for the full-traffic stream 

Relevance: High 

Notes: Additional video was collected on November 8, 2006 (6.5 hours; from 9:30 a.m. to 
1:30 p.m., and from 4:00 p.m. to 6:30 p.m.), but was not processed. Video data also was 
collected on November 9, 2006 (8:00 a.m. to noon), but was not processed. 
In addition to the vehicle trajectory data, signal indication information is available for the 
dataset. Data can be downloaded here: http://www.webpages.uidaho.edu/ngsim/
resources0001.htm. 

 

http://www.entpe.fr/content/download/3451/21866/file/09-3831.pdf
http://www.webpages.uidaho.edu/niatt/research/final_reports/klk712_n10-07.pdf
http://ce571f2013.weebly.com/uploads/1/0/2/4/10249279/data-analysis-report-0400pm-0415pm.pdf
http://ce571f2013.weebly.com/uploads/1/0/2/4/10249279/data-analysis-report-0400pm-0415pm.pdf
http://trid.trb.org/view.aspx?id=882483
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Table 2-6. Strategic Highway Research Program 2 Naturalistic driving study. 

Source: https://insight.shrp2nds.us/home  
http://onlinepubs.trb.org/onlinepubs/trnews/trnews282SHRP2nds.pdf  

Date: 2012 to November 2013 

Location: Bloomington, Indiana – 150 vehicles 
Central Pennsylvania – 150 vehicles 
Tampa Bay, Florida – 441 vehicles 
Buffalo, New York – 441 vehicles 
Durham, North Carolina – 300 vehicles 
Seattle, Washington – 409 vehicles 

Duration: Varies by trip; estimated 3,700 years of data total 

Application: Intended for traffic safety analyses; to support the development of new and improved safety 
countermeasures; to prevent traffic collisions and injuries. 

Resolution: One-second resolution (based on examination of sample datasets) 

Detection: Instrumented vehicles 

Sample size: 1,891 instrumented vehicles, 2,600 participants 

Lane changing: Determined through manual referencing of the dashboard footage 

Other traffic: Provided by forward-facing radar for up to eight other vehicles in the vicinity of the subject 
vehicle. Positions are given relative to the subject vehicle. Data has gaps that must be 
addressed with preprocessing/imputation before using. 

Relevance: This data can be used for lane changing and car following, but would require much cleanup 
of the forward and lateral distance data, along with manual processing of the video data for 
lane-changing events, for car-following and lane-changing applicability. The datasets 
contain information about nearby vehicles, but do not fully describe the entire traffic stream. 

Notes: The relevant data from this study include GPS location data and roadway data that can be 
linked to the GPS data. Roadway data includes horizontal curvature, grade, cross slope, 
lane and shoulder information, speed limit signs, and intersection locations and 
characteristics. Forward-facing camera video is available for manual determination of lane 
position, along with turn signal activation information for potential aid in identifying lane-
changing maneuvers. Radar data are recorded for up to eight objects at any given time in 
front of the vehicle (i.e., lateral and forward distance to object/lead vehicle). 
Data must be formally requested along with a research proposal. Access will be contingent 
upon a successful review outcome of the proposal and access request. 

 
  

https://insight.shrp2nds.us/home
http://onlinepubs.trb.org/onlinepubs/trnews/trnews282SHRP2nds.pdf
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Table 2-7. I-80 Prototype dataset. 

Source: https://escholarship.org/uc/item/48s0p5gb  
http://arxiv.org/pdf/0804.0108.pdf  

Date: December 3, 2004 

Location: 2,950-foot section of I-80 Northbound in Emeryville, California 

Duration: Two one-half-hour, peak-period-time segments 

Application: Freeway-lane selection, cooperative merging, oversaturated freeway modeling 

Resolution: 15 Hz temporal resolution 

Detection: Video camera atop a building of 100 meters. A machine vision system was used to produce 
the trajectories of all vehicles. 

Sample size: 4,733 vehicles 

Lane changing: Determined by trajectory path of subject vehicle 

Other traffic: Trajectories are available for the full-traffic stream 

Relevance: Low 

Notes:  

 

Table 2-8. Washington County, Minnesota. 

Source: http://www.cts.umn.edu/Publications/ResearchReports/reportdetail.html?id=2362  

Date: 2014 

Location: Neal Avenue and 6th Street, Washington County, Minnesota 

Duration: 30 minutes 

Application: Before and after study of driver response to new signage 

Resolution: 20 Hz 

Detection: Two radar sensors 

Sample size: 26 vehicles 

Lane changing: Not applicable; there is only one lane per direction 

Other traffic: Not completely described; some vehicles on the roadway do not have trajectory data, so it is 
not possible to represent all surrounding vehicles for a particular subject vehicle. 

Relevance: The low volumes in this dataset make it unsuitable for car-following applications, and the 
roadway configuration of one lane in each direction make it unsuitable for lane-changing 
applications. 

Notes:  

 
  

https://escholarship.org/uc/item/48s0p5gb
http://arxiv.org/pdf/0804.0108.pdf
http://www.cts.umn.edu/Publications/ResearchReports/reportdetail.html?id=2362
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Table 2-9. Tucson, Arizona. 

Source: http://www.researchgate.net/publication/3427860_Methods_of_analyzing_traffic_imagery_
collected_from_aerial_platforms  

Date: May 2002 

Location: 4.69 km segment of Speedway Blvd between Euclid Avenue and Alvernon Way 

Duration: Approximately 10 minutes 

Application: Estimation of macroscopic traffic flow parameters (e.g., travel time) 

Resolution: Not specified 

Detection: Aerial photography (helicopter based) 

Sample size: One platoon of nine vehicles 

Lane changing: Available from the trajectory data 

Other traffic: Only positions of other vehicles in the platoon being followed 

Relevance: Low. The small sample size of this data set limits its applicability to the current project. 
However, it does include complete trajectory data for a platoon of vehicles. 

Notes: None. 

 

Table 2-10. System for Assessment of the Vehicle Motion Environment (SAVME) 

Source: http://deepblue.lib.umich.edu/handle/2027.42/1324  
Ervin, R. D., et al. System for assessment of the vehicle motion environment (SAVME). Vol. 2. 
University of Michigan, Transportation Research Institute, 2000. 

Date: 1996 

Location: An approximately 500-foot, five-lane arterial in Ann Arbor, Michigan 

Duration: 18 hours 

Application: Design of driver assistance systems, study of driving behavior, and safety evaluations of 
specific roadways 

Resolution: 10 Hz temporal resolution 

Detection: Digital video images from roadside towers 

Sample size: 30,500 vehicles 

Lane changing: Determined by trajectory path of subject vehicle 

Other traffic: Trajectories are available for the full-traffic stream 

Relevance: Trajectory data are recorded for each vehicle that traverses the roadway. All data were 
collected and analyzed prior to 2001 and may have used video detection techniques that are 
not as accurate as those deployed in NGSIM. The project team has not been able to find a 
contact with knowledge of the dataset. Research conducted and published using the SAVME 
dataset is very limited. 

Notes: Data includes explicit lane locations, absolute positioning coordinates, and intervehicle 
variables (e.g., range, range rate, and angle from each host to every other vehicle). A 
visualization tool, the VME Animator, also is available for the data. 

http://www.researchgate.net/publication/3427860_Methods_of_analyzing_traffic_imagery_%E2%80%8Ccollected_from_aerial_platforms
http://www.researchgate.net/publication/3427860_Methods_of_analyzing_traffic_imagery_%E2%80%8Ccollected_from_aerial_platforms
http://deepblue.lib.umich.edu/handle/2027.42/1324
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Table 2-11. JHK and FHWA Datasets from Los Angeles and Washington, D.C. 

Source: http://trid.trb.org/view.aspx?id=273798  

Date: Spring 1983. 

Location: Various freeway sections in the Los Angeles and Washington D.C. area, ranging between 
1,200 and 3,200 feet. Generally in the p.m. peak traffic periods. 

Duration: One hour for each segment 

Application: Gather data for studying vehicular traffic flow across selected freeway section types, for 
enhancing freeway simulation models (including acceleration/deceleration profiles, car-
following headways, lane changing and merge gap acceptance). 

Resolution: 1 frame per second (fps) 

Detection: Aerial photography from circling Short Take-Off and Landing (STOL) aircraft 

Sample size: All vehicles passing through the roadway sections (typically 100,000 to 200,000 per 
segment and hour). Total of 14 datasets. 

Lane changing: Determined by trajectory path of subject vehicle 

Other traffic: Trajectories are available for the full-traffic stream 

Relevance: Low 

Notes: Data is available on nine-track magnetic tape from the FHWA Office of Research. An 
address and phone number are provided. Data include speed, position coordinates, and 
lane number. 

 
  

http://trid.trb.org/view.aspx?id=273798
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Table 2-12. University of Florida. 

Source: Soria, Irene, Lily Elefteriadou, and Alexandra Kondyli. “Assessment of car-following models 
by driver type and under different traffic, weather conditions using data from an 
instrumented vehicle.” Simulation Modelling Practice and Theory 40 (2014): 208-220. 

Date: Various dates in 2012 

Location: Jacksonville Florida, two routes in the AM and PM each of which lasting about one hour and 
15 minutes to traverse 

Duration: 31 subjects drove an instrumented vehicle 

Application: Simulation modeling and driver behavior 

Resolution: 1 Hz 

Detection: Instrumented sport utility vehicle (SUV) vehicle with GPS and four onboard cameras 
capturing an fps. 

Sample size: About 31 subjects of different gender and age drove approximately one hour and 
15 minutes each under congested and uncongested regions with and without rain. 

Lane changing: Lane changes were identified manually from the four onboard cameras 

Other traffic: The position of other vehicles on the same and adjacent lanes was extracted from the video 
cameras manually. 

Relevance: Subjects may not drive as they usually do in each of their hourly test runs. Dataset is small 
to be representative of the driver population, but it can and has been used in targeted 
studies of car following and lane changing by Dr. Elefteriadou. (Hill, Corey, Lily Elefteriadou, 
and Alexandra Kondyli. 2014. “Exploratory Analysis of Lane Changing on Freeways Based 
on Driver Behavior.” Journal of Transportation Engineering. Soria, Irene, Lily Elefteriadou, 
and Alexandra Kondyli. 2014. “Assessment of car-following models by driver type and under 
different traffic, weather conditions using data from an instrumented vehicle.” Simulation 
Modelling Practice and Theory 40: 208-220.) 
 

Notes: None. 
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Table 2-13. Ohio State. 

Source: http://www2.ece.ohio-state.edu/~coifman/documents/#DataSets  
Xuan, Y., Coifman, B., “Identifying Lane Change Maneuvers with Probe Vehicle Data and 
an Observed Asymmetry in Driver Accommodation,” Journal of Transportation Engineering, 
ASCE, Vol 138, No 8, 2012, pp. 1051-1061. 

Date: Various dates from 2005 to 2011 

Location: Two different overlapping tour routes on I-71 in Columbus Ohio. The longer route covered 
28 miles round trip, while the shorter route was roughly 14 miles long and covered the most 
congested portion of the longer tour. 

Application: Driver behavior 

Resolution: October 2008 to Aug 2011: LIght Detection And Ranging (LIDAR) @ 37 Hz, DGPS @ 5 Hz 
June 2005 to October 2008: LIDAR @ 3 Hz, DGPS @ 1 Hz or 5 Hz 

Detection: LIDAR, Differential GPS (DGPS), Radar. Loop detectors roughly one-third mile apart. Front 
and rear cameras. 

Sample size: In terms of vehicle miles traveled (VMT), the dataset is 40 times larger than NGSIM. The 
corridor is 70 times longer than I-80 NGSIM. 

Lane changing: Developed an algorithm to identify lane changes 

Other traffic: The position of other vehicles on the same and adjacent lanes can be extracted from the 
LIDAR and radar readings. 

Relevance: Can be used for car-following and lane-changing research involving a single vehicle. 

Notes: While the raw data have been collected over several years, Ohio State has not secured 
sufficient funds to develop the tools necessary to extract the vehicle trajectories from the 
LIDAR data. The current goal is to extract data for a single day (trajectory data from two 
round trips over the long tour, plus the concurrent loop detector data). 

 

http://www2.ece.ohio-state.edu/%7Ecoifman/documents/#DataSets
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Table 2-14. BOSCH Dataset. 

Source: Database description/survey provided by Punzo 

Date: Prior to 2003 

Location: Stuttgart City and nearby freeway, Germany. Signalized intersections included 

Duration: 4, 5, 7, and 20 minutes. Three runs for arterials, one run for freeway. 

Application: Car-following models. 

Resolution: 10 Hz 

Detection: Instrumented vehicles with radar and accelerometer sensors for precise measurement of 
spacing between leader and follower vehicles. 

Sample size: Small 

Lane changing: Not applicable for the type of data collected 

Other traffic: Relative position, speed, and acceleration data are available for the subject vehicle and the 
lead vehicle only. 

Relevance: Limited to car-following model validation, as position information for other vehicles on the 
roadway is limited to only the vehicle being followed. 

Notes: Data is reported as being available online. However, provided web links do not work. 

 

Table 2-15. MOCoPo (PREDIT, French DOT). 

Source: Rivoirard, Lucas, et al. "Using Real-World Car Traffic Dataset in Vehicular Ad Hoc Network 
Performance Evaluation." International Journal of Advanced Computer Science and 
Applications (IJACSA) 7.12 (2016): p390-398. 
https://hal.archives-ouvertes.fr/hal-01503210/document 

Date: Collected September 12-16, 2011. 

Location: Three RN87 freeway sections, 1.3 km long, South of Grenoble, France. Two lanes in each 
direction. Freeway sections include merge section and weaving section. 

Duration: One hour each, 3 sites, 5 days, for a total of 15 hours. Only 8 hours will be processed. 

Application: Lane changing in merging and weaving zones. Car-following behavior, with emphasis on 
distance preservation behavior of drivers inside platoons across homogeneous sections. 

Resolution: 20 Hz 

Detection: Trajectory recording via aerial footage from helicopter at 500 meters, with high-precision 
GPS data for validation 

Sample size: Over 20,000 vehicles 

Lane changing: Determined by trajectory path of subject vehicle 

Other traffic: Trajectories will be available for the full-traffic stream 

Relevance: This trajectory dataset is anticipated but not yet available (apart from a small sample), 
currently making it infeasible as a data source for this project. 

Notes: This trajectory data currently is being processed. 

https://hal.archives-ouvertes.fr/hal-01503210/document
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Table 2-16. University of Napoli. 

Source: Database description/survey provided by Punzo. 
http://trid.trb.org/view.aspx?id=803580  

Date: 2004 

Location: Unsignalized streets in Naples, Italy 

Duration: 4.2 minutes for rural data. 3.3 min, 6.0 min, 5.3 min, and 5.0 min for urban data 

Application: Car-following studies 

Resolution: 10 Hz 

Detection: Instrumented vehicles (DGPS), with participants instructed to follow a lead vehicle. 

Sample size: Four vehicles 

Lane changing: Not applicable for the type of data collected, based on the instructions provided to study 
participants 

Other traffic: Position data are available for the instrumented vehicles, enabling car-following behavior 
modeling. 

Relevance: Limited to car-following model validation, as position information for other vehicles on the 
roadway is limited to only the instrumented vehicles. 

Notes:  

 
  

http://trid.trb.org/view.aspx?id=803580
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Table 2-17. Israel Driving Simulator. 

Source: Database description/survey provided by Punzo. 
http://trid.trb.org/view.aspx?id=803580   
http://toledo.net.technion.ac.il/files/2012/12/TRR_PassingGapDefinition_11.pdf  

Date: Not mentioned. Inferred from publication dates to be 2008. 

Location: Simulated environment of a 7.5-kilometer (km) rural road with uncongested conditions and no 
intersections. 

Duration: Approximately 40 minutes to complete four scenarios 

Application: Passing behavior 

Resolution: 10 Hz 

Detection: Recorded by simulator 

Sample size: 100 drivers, each presented with 4 of 16 different driving scenarios 

Lane changing: In a passing scenario only; the simulated environment was a divided two-lane highway with 
one lane per direction. 

Other traffic: Positions of all other vehicles are precisely known. 

Relevance: Using simulated driving data to calibrate or validate simulation models is circular and 
inappropriate. Thus, this data is unsuitable for the current project needs. 

Notes: STSIM simulation platform. 

 
  

http://trid.trb.org/view.aspx?id=803580
http://toledo.net.technion.ac.il/files/2012/12/TRR_PassingGapDefinition_11.pdf
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Table 2-18. Hokkaido Test Track, Japan. 

Source: http://elib.dlr.de/21349/1/FOVUS2004_Brockfeld.pdf  
http://elib.dlr.de/78741/1/WSC12_paper_DLR-TS_Nippold_Wagner.pdf  
http://trid.trb.org/view.aspx?id=729373  

Date: October 2001 

Location: Hokkaido single-lane 3-km circular test track, Japan 

Duration: Eight experiments, each about 15-30 minutes 

Application: Car-following behavior 

Resolution: 10 Hz 

Detection: DGPS and real-time kinematic measurements used to gather detailed position information. 

Sample size: Nine cars in each experiment (plus one lead vehicle driven by a researcher) 

Lane changing: Not applicable, as this was a single-lane track. 

Other traffic: Positions of all vehicles are known throughout the experiments. 

Relevance: Can be used for car-following validation and calibration, but not for lane changing due to the 
single-lane setup. 

 

Table 2-19. The Netherlands. 

Source: Hoogendoorn, Serge P., et al. "Traffic data collection from aerial imagery." IFAC Proceedings 
Volumes 36.14 (2003): 89-94.  

Date: Not mentioned in the paper. Prior to 2003 based on publication date. 

Location: Different motorway sites near the Dutch city of Utrecht, in particular on the A2 motorway. 
(210 meters maximum). 

Duration: 35-second clips 

Application: Driver behavior modeling, such as lane changing and car following 

Resolution: The spatial resolution was 20 cm; the temporal resolution is 8.6 Hz. 

Detection: Helicopter with digital camera 

Sample size: No additional details given. 

Lane changing: Determined by trajectory path of subject vehicle. 

Other traffic: Trajectories are available for the full-traffic stream. 

Relevance: The 35-second maximum duration limits the usefulness of these trajectory datasets for the 
purpose of this project, but the vehicle volumes and high degree of accuracy make this a 
relevant dataset if needed. 

Notes: None. 

 

http://elib.dlr.de/21349/1/FOVUS2004_Brockfeld.pdf
http://elib.dlr.de/78741/1/WSC12_paper_DLR-TS_Nippold_Wagner.pdf
http://trid.trb.org/view.aspx?id=729373
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Table 2-20. Intelligent Vehicle Safety Systems. 

Source: http://onlinepubs.trb.org/onlinepubs/shrp2/SHRP2_S2-S09-RW-1.pdf  
https://www.cvl.isy.liu.se/en/research/projects/completed-
projects/IVSS/IVSS_intersection_accidents_main_report.pdf  

Date: March 2007 to May 2008 

Location: One semirural intersection (at Savenas) east of Gothenburg, Sweden. 
One rural intersection (at Jung) on E20 between Gothenburg and Stockholm, Sweden. 

Duration: About 626 hours of video were recorded at Savenas between January 2006 and July 2008; 
95 hours were recorded at Jung between March 2007 and May 2008. Only the period 
between 9:00 a.m. and 3:00 p.m. was recorded. 

Application: Intersection safety 

Resolution: 20 Hz 

Detection: Ground-based overhead camera footage 

Sample size: 744,000 objects were tracked at Savenas; 152,000 at Jung. 
About 70 percent of these tracked objects were automatically filtered out from the trajectory 
datasets as nonvehicle objects or unreliable objects. 
Only midday video was used for processing (11:00 a.m. to 2:00 p.m.). 

Lane changing: Each intersection approach had only one lane for each movement; thus, no discretionary 
lane changes occurred, and not enough of the upstream segments are observable to 
provide complete information about mandatory lane changes. 

Other traffic: Based on testing, approximately 13 percent of the traffic stream may have gone undetected. 

Relevance: Given the lack of multiple lanes for any particular direction/movement, the dataset is poorly 
suited for lane-changing analysis. As the focus of the study was on intersection safety, the 
trajectory coverage is largely focused on the intersection area itself, making it poorly suited 
for car following as well. 

Notes: None. 

 

http://onlinepubs.trb.org/onlinepubs/shrp2/SHRP2_S2-S09-RW-1.pdf
https://www.cvl.isy.liu.se/en/research/projects/completed-projects/IVSS/IVSS_intersection_accidents_main_report.pdf
https://www.cvl.isy.liu.se/en/research/projects/completed-projects/IVSS/IVSS_intersection_accidents_main_report.pdf
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Chapter 3 Existing Trajectory 
Collection Methods and Tools 

In this section, we have compiled information on existing and innovative vehicle collection methods 
and tools that have been used in the collection and processing of vehicle trajectories in transportation 
or other fields. Table 3-1. Vehicle Trajectory Collection Methods summarizes and categorizes the 
available methods in terms of accuracy and applicability specifically for this project. 
 
Even though video detection technology has improved and there are widely used open-source 
libraries, such as OpenCV that perform object detection, according to the stakeholder interviews, the 
technology has still a very high barrier of entry for the type of application we are primarily interested, 
trajectory extraction of the full-traffic stream. An alternative that will provide vehicle position data of 
similar accuracy over a longer path requires equipping an instrumented vehicle with a high-accuracy 
GPS device. Such a device will allow for lane identification, information that currently is missing from 
most Floating Car datasets that have been used for car-following calibration and validation. In addition 
to the positioning information, accelerometer measurements from smartphones or car-manufactured 
devices can be used to augment GPS-derived speed and acceleration measurements, which typically 
contain considerable noise. In the following sections, we describe each data collection technology in 
higher detail. 

GPS Technologies 
The accuracy of GPS receivers has significantly improved over the years, and it is anticipated to 
improve even further with the addition of European and Russian satellites. A typical setup 
requires a GPS antenna, signal receiver/processor, and data logger. The National Marine 
Electronics Association (NMEA) has established a communications standard (NMEA-0183) to 
promote interoperability between GPS receivers and data loggers made by different 
manufacturers (http://www.catb.org/gpsd/NMEA.html). In some cases, these components may be 
available as consolidated pieces of hardware; for example, the iPhone combines all GPS 
components into a single unit. The survey of candidate technologies presented in table 3-2 
assumes that in-vehicle hardware setup can be performed in advance before drivers begin 
making field runs. When evaluating the costs and benefits associated with each technology listed, 
it also is important to note that a standard traffic lane is approximately 12 feet (3.6 meters) wide. 

Post-Processing for Improved Accuracy 
Post-processing of GPS data, based on correction factors for the times and locations collected, are a 
common method for improving GPS accuracy after the data have been collected. However, this is not 
a viable strategy for the purpose of this project because consumer-level GPS devices do not collect 
the data needed for a post-processing workflow. There is one possible exception, which we describe 
below (the Piksi receiver). The Continuously Operating Reference Stations (CORS) network operated 
by the National Oceanic and Atmospheric Administration (NOAA) provides a free online service 

http://www.catb.org/gpsd/NMEA.html
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(Online Positioning User Service (OPUS)) that allows users to post-process their detailed GPS data, 
assuming it contains the parameters needed for post-processing (http://www.ngs.noaa.gov/OPUS/). 

Table 3-1. Vehicle trajectory collection methods. 

Technology Accuracy Applicability 

GPS Greater than 30 feet Inexpensive. Has been used in many car-following 
studies. Lane location cannot be determined. 

GPS with Wide Area 
Augmentation System 
(WAAS) 

Less than 3 feet Inexpensive. Can be used to determine lane location 
using map-matching. 

GPS operating on 
StarFire I Network 

Less than 1 foot Affordable. Can be used to determine lane location using 
map-matching. 

Speed and 
Acceleration from 
onboard vehicle 
sensors 

Higher than GPS, 
depends on vehicle 
sensors 

Speed and acceleration can be collected by 
manufacturer-equipped in-vehicle sensors. 

Radar 1.5 feet Affordable and necessary for determining the distance of 
the leader and follower vehicles. 

LIDAR Determines 3D objects in 
the surrounding 
environment up to 
150 feet away 

Each device is more than $50,000. Used by Google in 
their autonomous vehicles. The limited range will not 
allow the identification of vehicles more than a second 
away if the vehicles are traveling with 70 mi/h. 

Video Detection Depends on resolution. 
Can be less than a few 
feet 

Technology has improved and has been partially 
commoditized. However, it has still a high barrier of entry. 

Unmanned Aerial 
Vehicles 

Same as video detection. Video detection is harder than recording from ground-
based structures. 

Video Stabilization 
Techniques 

Depends on each 
particular case 

When camera is placed on an aerial or moving object, 
stabilization, software or hardware based, is necessary. 

 

GPS Innovations 
There is a new technology just coming to the market (Piski) now that provides very accurate 
positioning information (to a few centimeters) using receivers that cost approximate $500 each. The 
setup requires one receiver to be installed in a fixed position in the field (the “base station”), and 
remain in range of all other mobile receivers. According to the developers, the bundled antenna of the 
installed base provides a line-of-sight range of about one mile, but the documentation suggests that a 
range of up to 20 km would be possible with the proper radio antenna. Due to the very limited range of 
the Piski base station, using Piski GPS devices is recommended only when investigating the 
movement of vehicles on one particular corridor, such as one of the already surveyed NGSIM 
corridors. 

http://www.ngs.noaa.gov/OPUS/
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Table 3-2. Comparison of GPS technologies. 

 Global Positioning 
System (GPS) 

Wide Area Augmentation  
System (WAAS) 

StarFire I Network  
by John Deere 

Background The core element of 
the majority of 
positioning systems 
today, GPS is a free 
publicly available 
resource provided by 
the U.S. government. 
The iPhone uses GPS 
data in combination 
with Wi-Fi data to 
evaluate its current 
position. 

This system was originally intended to 
improve GPS accuracy for assisted 
landing and flight operations among pilots. 
Whereas, the NDGPS system uses land-
based beacons to correct GPS 
coordinates, WAAS uses a network of 
satellites for its GPS corrections. 

Used primarily for 
autonomous agricultural 
equipment applications, 
the StarFire I network 
provides very high spatial 
resolution. Even greater 
accuracy is available via 
the StarFire II network, 
which requires a 
subscription. 

Typical 
spatial 
accuracy 
(under 
favorable 
conditions) 

15 meters in general 
(http://www8.garmin.com/
aboutGPS/waas.html). 
5 meters for the 
iPhone 5S 
(http://racerender.com/
TrackAddict/docs/Accur
acy.html). 

30 inches 
(http://www.gps.gov/technical/ps/2008-
WAAS-performance-standard.pdf). 
Less than 2 meters in NPA mode. Less 
than one meter in PA mode 
(http://www.nstb.tc.faa.gov/REPORTS/wa
aspan47.pdf). 
2.5 meters for portable units (iPhone 
attachments, Bad Elf receiver) 
(http://gps.dualav.com/explore-by-
product/xgps150a/; 
http://www.emprum.com/ultimategps.php; 
http://bad-elf.com/pages/be-gps-2200-
detail). 

10 inches 
(http://www.gps.gov/tech
nical/ps/2008-WAAS-
performance-
standard.pdf). 

Typical cost 
per vehicle 

$649 for an iPhone 5S, 
which includes all 
hardware needed. 

$400 for Furuno receiver 
(http://www.furunousa.com/products/Prod
uctDetail.aspx?product=BBWGPS). 
$259 for SI-TEX receiver (http://www.si-
tex.com/downloads/retail_price_list.pdf). 
$360 for data logger 
(http://homepages.ihug.com.au/~robk/pric
e.html). 
$100 for iPhone WAAS attachment, plus 
$649 for iPhone 5S 
(http://gps.dualav.com/explore-by-
product/xgps150a/; 
http://www.emprum.com/ultimategps.php) 
$199 for standalone portable Bad Elf 
receiver and data logger (http://bad-
elf.com/pages/be-gps-2200-detail). 

$3,195 for receiver 
(http://www.deere.com). 
$360 for data logger 
(http://homepages.ihug.c
om.au/~robk/price.html). 

 

http://www8.garmin.com/aboutGPS/waas.html
http://www8.garmin.com/aboutGPS/waas.html
http://racerender.com/TrackAddict/docs/Accuracy.html
http://racerender.com/TrackAddict/docs/Accuracy.html
http://racerender.com/TrackAddict/docs/Accuracy.html
http://www.gps.gov/technical/ps/2008-WAAS-performance-standard.pdf
http://www.gps.gov/technical/ps/2008-WAAS-performance-standard.pdf
http://www.nstb.tc.faa.gov/REPORTS/waaspan47.pdf
http://www.nstb.tc.faa.gov/REPORTS/waaspan47.pdf
http://gps.dualav.com/explore-by-product/xgps150a/
http://gps.dualav.com/explore-by-product/xgps150a/
http://www.emprum.com/ultimategps.php
http://bad-elf.com/pages/be-gps-2200-detail
http://bad-elf.com/pages/be-gps-2200-detail
http://www.gps.gov/technical/ps/2008-WAAS-performance-standard.pdf
http://www.gps.gov/technical/ps/2008-WAAS-performance-standard.pdf
http://www.gps.gov/technical/ps/2008-WAAS-performance-standard.pdf
http://www.gps.gov/technical/ps/2008-WAAS-performance-standard.pdf
http://www.furunousa.com/products/ProductDetail.aspx?product=BBWGPS
http://www.furunousa.com/products/ProductDetail.aspx?product=BBWGPS
http://www.si-tex.com/downloads/retail_price_list.pdf
http://www.si-tex.com/downloads/retail_price_list.pdf
http://homepages.ihug.com.au/%7Erobk/price.html
http://homepages.ihug.com.au/%7Erobk/price.html
http://gps.dualav.com/explore-by-product/xgps150a/
http://gps.dualav.com/explore-by-product/xgps150a/
http://www.emprum.com/ultimategps.php
http://bad-elf.com/pages/be-gps-2200-detail
http://bad-elf.com/pages/be-gps-2200-detail
http://www.deere.com/
http://homepages.ihug.com.au/%7Erobk/price.html
http://homepages.ihug.com.au/%7Erobk/price.html
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Table 3-2. Comparison of GPS technologies (continuation). 

 
Global Positioning 

System (GPS) 
Wide Area Augmentation  

System (WAAS) 
StarFire I Network  

by John Deere 
Temporal 
resolution 

Every five seconds 
(typical) using an 
iPhone with Runmeter 
installed (Original 
research with the 
Runmeter app on an 
iPhone 4S). 

Every second (Furuno receiver) 
(http://www.furuno.com/en/gnss/). 
Every one to two seconds (for data logger) 
(http://homepages.ihug.com.au/~robk/pric
e.html). 

Every second 
(http://manuals.deere.co
m/omview/OMPFP13846
_19/?tM=). 
Every one to two 
seconds (for data logger) 
(http://homepages.ihug.c
om.au/~robk/price.html). 

Notes The iPhone method 
does not require a 
separate data logger—
the RunMeter app can 
be used to this effect 
with a storage rate of 
once every five seconds 
(Original research with 
the Runmeter app on an 
iPhone 4S). 

The Furuno receiver supports NMEA-0183 
with manual rewiring 
(http://www.furuno.com/en/gnss/). 
The SI-TEX receiver supports NMEA-
0183 (http://www.si-
tex.com/index.php/product-
information/gps/gpk-11-detail). 
The Bad Elf portable receiver has a built-in 
data logger. 

StarFire receivers 
support the NMEA-0183 
standard, which allows 
them to be connected to 
other brands of data 
loggers 
(http://www.farmergps.co
m/install.htm). 

The previous receiver 
model, the StarFire300, 
has been discontinued 
but may be available 
used at a lower price 
(http://www.machinefinde
r.com/ww/en-
U.S./machine/2568321). 

Radar 
Radar is an object detection system that uses electromagnetic waves to identify the range, direction, and 
speed of moving and fixed objects. The radio transmitter emits radio waves, which hit the nearby object 
and are scattered in all directions based on reflectivity. The emitted signal is partly reflected back; and 
although it may be weak, it can be amplified to detect the relative position and angle of the nearby object. 
Short- and long-range radars are part of Adaptive Cruise Control systems that have been steadily 
gaining popularity among drivers and car manufacturers. Long range radars have been frequently used 
in instrumented vehicle studies and have a detection range of 2 to 600 feet. In the NDS, forward-looking 
long-range radar was used to record the relative distance of up to eight nearby vehicles. 

Video Detection 
Traffic camera installations are ubiquitous, but using oblique camera angles is not conducive to 
extraction of complete trajectory information as a result of many interfering factors, such as shadows, 
view obstructions created by vehicles in the foreground, and difficulties in extracting precise position 
information in the direction of the optical axis (http://photo.stackexchange.com/questions/12434/how-
do-i-calculate-the-distance-of-an-object-in-a-photo). Therefore, an approximately perpendicular view 

http://www.furuno.com/en/gnss/
http://homepages.ihug.com.au/%7Erobk/price.html
http://homepages.ihug.com.au/%7Erobk/price.html
http://manuals.deere.com/omview/OMPFP13846_19/?tM
http://manuals.deere.com/omview/OMPFP13846_19/?tM
http://manuals.deere.com/omview/OMPFP13846_19/?tM
http://homepages.ihug.com.au/%7Erobk/price.html
http://homepages.ihug.com.au/%7Erobk/price.html
http://www.furuno.com/en/gnss/
http://www.si-tex.com/index.php/product-information/gps/gpk-11-detail
http://www.si-tex.com/index.php/product-information/gps/gpk-11-detail
http://www.si-tex.com/index.php/product-information/gps/gpk-11-detail
http://www.farmergps.com/install.htm
http://www.farmergps.com/install.htm
http://www.machinefinder.com/ww/en-U.S./machine/2568321
http://www.machinefinder.com/ww/en-U.S./machine/2568321
http://www.machinefinder.com/ww/en-U.S./machine/2568321
http://photo.stackexchange.com/questions/12434/how-do-i-calculate-the-distance-of-an-object-in-a-photo
http://photo.stackexchange.com/questions/12434/how-do-i-calculate-the-distance-of-an-object-in-a-photo
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of the roadway surface and traffic stream is preferable, and can be obtained via the methods similar to 
those implemented in NGSIM. Furthermore, best results may be obtained on cloudy days or near 
midday to avoid shadow issues (e.g., no vehicle shadows being cast across several lanes). 
 
To maintain a minimum resolution of one foot per pixel, the maximum possible coverage range for 
a camera recording at 1080p (19201080 image size) would be approximately one-third mile on 
the longer horizontal dimension. The height needed to accomplish this degree of roadway 
coverage is a function of two camera parameters: its sensor size and its focal length 
(http://photo.stackexchange.com/questions/12434/how-do-i-calculate-the-distance-of-an-object-in-a-photo). 
As an example, given the specifications of the iPhone 5, the estimated viewing height needed to 
capture one-third mile of roadway in the image frame is approximately 2,200 feet 
(http://www.gizmag.com/camera-sensor-size-guide/26684/). Stitching together video streams from 
multiple cameras could be used to overcome limitations in terms of maximum feasible recording 
distance from the roadway surface or to increase the coverage zone, but stitching comes with its own 
complexities due to potential focusing issues and edge distortion created by the camera lens. 
 
The European UDRIVE project, opted for cameras in place of Radar as the technology for 
recording the vehicle’s immediate surroundings/environment (http://www.udrive.eu/). Mobileye 
is a system that uses a forward-facing camera to measure distance, relative speed, and 
acceleration of visible vehicles with a range of 100 meters and a 38-degree field of view 
(http://www.mobileye.com/technology/applications/vehicle-detection/). 

Unmanned Aerial Vehicles 
Commercially available Unmanned Aerial Vehicles (UAV) already are available for as little as $500, or 
$800 with an integrated high-resolution (19201080) video camera that can be monitored from the 
ground (http://www.dji.com/product/phantom). For the model without an integrated camera, a camera 
can be mounted using accessories from the vendor. UAVs can ascend to 1,000 feet in as little as one 
minute, and have the ability to hover in a roughly stationary position automatically using onboard 
instrumentation (including GPS). The $500 model allows for up to 15 minutes of continuous flight time 
and supports a maximum range of 1,000 feet, while the $800 model allows for up to 25 minutes of 
flight time and supports a maximum range of 1,600 feet. Both models are designed to return 
automatically to their flight origins in the event of communication failure or imminent battery depletion. 
 
The biggest hurdle to the use of UAVs for traffic surveillance in general is institutional, as the 
Federal Aviation Administration (FAA) regulates the use of UAVs for anything aside from 
recreational use (and specifies a maximum height of 400 feet for recreational purposes) 
(http://www.faa.gov/documentLibrary/media/Advisory_Circular/91-57.pdf). Permission must 
be granted from the FAA for any other UAV applications, and involves an application for 
Certificate of Authorization (COA), which must be sponsored by a public agency 
(http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/systemops/aaim/organiza
tions/uas/coa/). Washington State DOT (WSDOT) has successfully applied for a waiver, 
though the approval process took six months and the COA was only granted for one year 
(http://www.wsdot.wa.gov/research/reports/fullreports/703.1.pdf). The FAA is expecting to 
publish a proposal for looser regulations on UAVs under 55 pounds (of which the UAVs 
discussed here qualify), but that the timeline for adoption may be longer 
(http://www.usforacle.com/news/view.php/845153/Library-drone-plan-hits-turbulence). 

http://photo.stackexchange.com/questions/12434/how-do-i-calculate-the-distance-of-an-object-in-a-photo
http://www.gizmag.com/camera-sensor-size-guide/26684/
http://www.mobileye.com/technology/applications/vehicle-detection/
http://www.dji.com/product/phantom
http://www.faa.gov/documentLibrary/media/Advisory_Circular/91-57.pdf
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/systemops/aaim/organizations/uas/coa/
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/systemops/aaim/organizations/uas/coa/
http://www.wsdot.wa.gov/research/reports/fullreports/703.1.pdf
http://www.usforacle.com/news/view.php/845153/Library-drone-plan-hits-turbulence
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Viewing the image being recorded onboard the UAV is supported by many equipment manufacturers, 
so that the UAV can be appropriately positioned remotely (http://www.dji.com/product/phantom-2/spec). 
Image stabilization is a major problem, but may be addressed through software-based algorithms in 
post-processing, or may require additional stabilizing equipment to be mounted on the camera itself 
during recording. Such stabilization and control (pan and tilt) equipment is commercially available for 
use on UAVs (http://www.dji.com/product/zenmuse-z15/feature). 
 
Instead of using UAVs, chartered helicopter rides can be used to avoid the legal barriers of using 
UAVs. The biggest problem, however, is image stabilization, which renders vehicle detection harder 
than the NGSIM effort. For the sake of completeness, we provide the following information about 
helicopter-mounted cameras. 
 
For cameras placed inside the helicopter, the chartered helicopter must have suitable downward-
facing windows for filming through (sometimes called a vertical reference window), which may not be 
available in all areas (http://www.airbushelicopters.ca/optional-equipment/vertical-reference-window/; 
http://www.chinookaviation.com/window.htm). For the externally mounted camera approach, a 
wireless camera will be needed that supports remote control and viewing of the recorded image, since 
adjustments will not be possible through direct contact with the camera during flight. The GoPro Hero 
3+ ($400) is one such camera with these capabilities, with recording sizes of 10801920 
(http://gopro.com/cameras/hd-hero3-black-edition%20/). However, mounting cameras to the exterior 
of a helicopter, such as on the landing skids, is somewhat of a legal gray area; typically, the equipment 
will need to be approved by the helicopter operator and installed by an authorized technician 
(http://helicopterforum.verticalreference.com/topic/17221-gopro-camera-on-my-skids-faa-ok/). 
Different operators have different policies on externally mounted camera equipment, and most do not 
publish policies at all (http://goldengatehelicopters.com/). Some operators offer external camera 
mounting equipment (including stabilization equipment) as part of their helicopter packages 
(http://helistream.com/services/aerial-filming-company-california/; http://goldengatehelicopters.com/). 
Other providers may offer helicopter charter services specifically for surveying and aerial footage 
applications, with rates of $600 per hour being typical (http://www.helicopter-training-tours.com/price-
list.html).  
 
Regardless of the filming approach used, image stability will be an issue, and a gyro stabilizer will 
likely be needed to provide suitable image quality for trajectory tracing, even with software-based 
stabilization in post-processing (http://www.aneclecticmind.com/2009/04/05/on-helicopters-video-and-
stabilization/). Such stabilizers can cost thousands of dollars to purchase, but are sometimes available 
for rent as well. One product that was recommended for helicopter use on several online forums is the 
Ken-Lab KS-6, which sells for $2,400, but can be rented for as little as $65 per day 
(http://www.liteflighthelicopters.com/photography/; http://www.ken-lab.com/; and 
http://blueskyaerials.com/). 

Conventional Traffic Monitoring 
Traffic cameras and detectors are two of the most prevalent data collection systems available to 
transportation departments; and although they are not well-suited for trajectory tracing applications, 
they can still be used to obtain auxiliary data for use in this project. Specifically, detector data can be 
used to measure empirical headway distributions at specific points along the roadway, while video 
data can be used to record the number of lane-changing maneuvers in spatial bins over time. By 

http://www.dji.com/product/phantom-2/spec
http://www.dji.com/product/zenmuse-z15/feature
http://www.chinookaviation.com/window.htm
http://gopro.com/cameras/hd-hero3-black-edition%20/
http://helicopterforum.verticalreference.com/topic/17221-gopro-camera-on-my-skids-faa-ok/
http://goldengatehelicopters.com/
http://helistream.com/services/aerial-filming-company-california/
http://goldengatehelicopters.com/
http://www.helicopter-training-tours.com/price-list.html
http://www.helicopter-training-tours.com/price-list.html
http://www.aneclecticmind.com/2009/04/05/on-helicopters-video-and-stabilization/
http://www.aneclecticmind.com/2009/04/05/on-helicopters-video-and-stabilization/
http://www.liteflighthelicopters.com/photography/
http://www.ken-lab.com/
http://blueskyaerials.com/
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linking these two variables, it also is possible to explore the relationship between lane-changing 
behavior and macroscopic traffic parameters (e.g., headway distribution, density, speed): 

• Lane Changing. The California Department of Transportation (Caltrans) provides 
several traffic camera feeds at 640480 resolution and high-frame rates (e.g., the 
Orange County feeds), which can be used to measure the number of lane changes 
that occur across different segments of freeway in the image frame 
(http://video.dot.ca.gov/). Software can be configured to automatically record the 
timing and location (pixel coordinates) of each lane-changing maneuver by clicking 
on each vehicle as it performs a lane-changing maneuver. A correspondence table 
could then be used to translate the pixel coordinates into lane number and/or 
freeway segment, subject to the suitability of the camera angle. 

• Headway Distributions. The Berkeley Highway Laboratory collected and archived 
detailed detector data at 1/60 second resolution using custom controller software, 
which allows for high-resolution headway estimation 
(http://www.its.berkeley.edu/publications/UCB/2007/CWP/UCB-ITS-CWP-2007-2.pdf; 
http://www.escholarship.org/uc/item/0248v7w8). This software could be deployed on 
other controllers in a similar manner to obtain precise empirical distributions for 
headways at compatible vehicle detection stations. 

http://video.dot.ca.gov/
http://www.its.berkeley.edu/publications/UCB/2007/CWP/UCB-ITS-CWP-2007-2.pdf
http://www.escholarship.org/uc/item/0248v7w8
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Chapter 4 Validation Processes and 
Tools 

In the transportation field, exporting vehicle trajectories from mesoscopic or microscopic models has 
not been used frequently, relying instead on aggregated flow and travel time measures provided by 
the software itself. The increasing focus on travel time reliability has opened up the possibility of 
processing additional measures that can only be obtained by analyzing observed or simulated vehicle 
trajectories. In this section, we have classified the reviewed trajectory tools as aggregate and 
disaggregate. Aggregate are the tools primarily concerned with the properties of an entire trajectory, 
such as travel time. Disaggregate are those tools that allow the user to calculate microscopic 
measures, such as gaps or acceleration at any given time step. 

Aggregate Tools 

NEXTA (SHRP 2 L04) 
Dr. Xuesong Zhou has developed a large collection of open-source modeling tools, including a 
mesoscopic simulator, a Dynamic Traffic Assignment (DTA) model, and the NEXTA visualization 
platform. As part of the SHRP L04 project, Dr. Zhou developed a trajectory processor that is primarily 
targeted at the extraction of reliability-related measures from mesoscopic trajectories. Figure 4-1 
shows the workflow between the scenario manager and the trajectory processor, including some of 
the reliability measures that can be extracted. Different weather and incident scenarios are developed 
with the scenario manager; and the resulting trajectories are post-processed by the trajectory 
processor to extract measures, such as the travel-time variance and buffer index. The user is able to 
specify a subset of origin-destination (OD) pairs for which the distributions of travel time for the 
observed and simulated data are visualized in the Graphical User Interface (figure 4-2). 
 
The SHRP L04 trajectory post-processor has several components that are of interest in this project: 

• A map-matching algorithm that snaps observed trajectories from TomTom to the 
simulation network. Data collected from GPS units can benefit from using map-
matching to identify the properties of the link the vehicle is on, including speed limit or 
slope. Map-matching is necessary when the lane number has to be identified from 
the GPS data, a task that requires data to be snapped not only to the appropriate 
link, but also to the closest lane. Map-matching is a trivial task only when there is no 
error in the GPS data. A vast amount of research has been conducted to determine 
the best methodology to deal with statistical noise and outliers given the fact that the 
obvious choice of snapping a GPS point to the closest roadway feature produces 
discontinuous paths with many lateral and longitudinal inconsistencies. Even though 
map-matching is an important and well researched problem, only a few open-source 
tools exist and only one commercial four-step planning package has related 
functionality. 
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• A visualization engine that allows the user to select paths on a map and visualizes 
macroscopic properties of the paths using graphs (figure 4-2). The visualization 
engine requires that paths are saved in csv format to be visualized in Google Earth 
and in the NEXTA desktop application. 

 

 

Figure 4-1. Flow chart. SHRP L04 trajectory processor. 
(Source: http://onlinepubs.trb.org/onlinepubs/shrp2/RFPL38/L04webinarpresentation.pdf.) 

http://onlinepubs.trb.org/onlinepubs/shrp2/RFPL38/L04webinarpresentation.pdf
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Figure 4-2. Screenshot. Strategic Highway Safety Plan L04 trajectory visualizer. 
(Source: http://onlinepubs.trb.org/onlinepubs/shrp2/RFPL38/L04webinarpresentation.pdf.) 

The computation engine inside the SHRP L04 processor stores and analyzes trajectories at the 
aggregate level because its primary objective is not the analysis of vehicle interactions, but the 
calculation of travel time from origin to destination. To achieve this, time-dependent link travel times 
are stored in multiple matrices, one matrix for each time period. To calculate travel time from origin to 
destination, a vehicle is traced along its path keeping a record of link arrival times. Linear interpolation 
is used to identify the weights to associate to link travel times of different time periods in the travel time 
calculations. Currently, the trajectory simulator does not allow us to calculate the location of all 
vehicles at each time step. Instead, vehicle locations are registered only when vehicles move from 
one link to the next, regardless of the time interval that has elapsed. This is a parsimonious method to 
store and process trajectories in a regional simulation involving hundreds of thousands or even 
millions of vehicles that are simulated by a mesoscopic tool. Storing trajectory information every 
second or subsecond would require several Terabytes even for a midsize network and for a few hours 
of simulation. Even though the computational engine behind the SHRP L04 project may not be directly 
applicable to this project, significant insights and functionalities can be copied from the open-source 
codebase. 
 

http://onlinepubs.trb.org/onlinepubs/shrp2/RFPL38/L04webinarpresentation.pdf
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SHRP Reliability IDEA Program: Urban Travel Reliability Analysis 
with Consumer GPS Data 
To analyze route travel-time reliability, Dr. Marco Nie from Northwestern University built a similar tool 
with that of Dr. Zhou, but utilized a different set of technologies, including the relational database 
PostgreSQL. The objective of the project was to compare the reliability of the link and route travel 
times from ground sensors with TomTom provided data. To achieve this, Dr. Nie started with 
TomTom’s MultiNet dataset, a collection of matrices that contains average link travel times every five 
minutes, the TrafficStat dataset that contains selected route travel times, and the ground sensor data. 
All data were mapped to the regional planning network shown in Figure 4-3. The regional planning 
network was used as a base for all subsequent analysis and for finding path travel times on alternative 
routes. The route segments TomTom uses often are referred to as the Traffic Message Channel’s 
(TMC), and are different than the links of the regional roadway network in length and shape. To 
overcome this obstacle, Dr. Nie used map-matching to associate one or more TMC links with a single 
planning link. After doing so, his team was able to identify alternative paths from a selected set of 
origins and destinations and calculate their reliability. Path travel-time calculations were performed in a 
similar fashion with the SHRP L04 project: vehicles were traced along their paths and proper travel 
times were selected based on the time a vehicle arrived at each link. Paths, as it was the case with 
the L04 project, were stored as a sequence of visited links, as opposed to a sequence of visited points 
for every time interval. 
 
The computational engine and visualizer used in the SHRP IDEA project is relevant to this project for 
the following reasons: 

• Instead of storing segment travel times as matrices, the engine stores them as 
records in PostgreSQL, an industrial strength relational database. This database 
allows for querying and grouping the travel-time results easily using the SQL scripting 
language. Cambridge Systematics proposes that we use the PostgreSQL database 
and extend it with spatiotemporal capabilities. 

• By using a custom built visualization tool developed in Visual Studio and the .NET 
programing environment, the Northwestern team has built a simple, powerful, and 
extensible user interface that can be extended to visualize other elements in addition 
to networks and graphs. Even though the NEXTA visualizer developed by Dr. Zhou 
contains more features, the simplicity of the code developed in Northwestern is 
particularly important for this project. 

 
In terms of processing trajectories on a second-by-second or subsecond basis, the Northwestern tool 
has the same drawbacks as the L04 project. It stores trajectories as a sequence of links and records 
when a vehicle arrives at the beginning of a link. As such, it is not capable of querying the position of 
the vehicles in any particular time, unless significant calculations are performed outside the database. 
Some of the SHRP 2 IDEA visualizations are presented below in Figure 4-3 and include area-wide 
network depictions or link-specific histograms. Given that this project is mostly focused on linear 
corridors and less on city-wide networks, the visualizations related to link properties are relevant to the 
project objectives. 
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Figure 4-3. Charts. SHRP2 IDEA visualizations. 
(Source: SHRP 2 Reliability IDEA L15(D).) 

DTA Anyway 
The San Francisco County Transportation Authority (SFCTA) has developed a large set of python 
classes that read, write, and modify mesoscopic DTA data. Although the current functionality does not 
include reading and writing mesoscopic trajectories it can be easily extended to do so. The current 
functionality includes: 

• Reading and writing mesoscopic DTA network information including, nodes, links, 
movements, and signals. 

• Reading mesoscopic simulation results for querying, processing, and reporting. 

• Converting four-step planning networks into mesoscopic DTA networks. 

• Importing transit route information from four-step planning packages or the General 
Transit Format Specification into a mesoscopic simulation software. 

• Importing time signals stored in Excel tables into pretimed signals. 

• Storing and reporting count data into a separate utility called CountDracula. 

• Visualizing flows, counts, travel times, and other simulation results. 
 
The SFCTA’s code base can be found in https://code.google.com/p/dta/. The following picture shows 
one of the more complex visualizations that can be achieved with DTA Anyway. Specifically, it shows 
the simulated flows on the Geary corridor versus the reported counts at each intersection of Geary 
and cross-street (flow of traffic is from right to left). The bottom chart in the plot depicts flow on the 
corridor with a blue line, while count data are shown as black circle points. Perpendicular dotted lines 
signify an intersection with a cross-street whose name is shown on the bottom chart. The top chart 
shows the movement flows that enter the corridor, while the middle plot shows the movement flows 
(and counts) that leave the corridor. This plot is an example of how several aggregate link and 
movement quantities can be shown simultaneously on the same complex chart to provide valuable 
insight on corridor operations at the aggregate level. 

https://code.google.com/p/dta/
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Figure 4-4.  Graphs. Corridor volume plot from Dynamic Traffic Assignment Anyway. 
(Source: San Francisco Transportation Authority.) 

Privately Developed Tools 
Simulation modelers often build a set of tools that read aggregate simulation results and produce the 
set of measures appropriate for calibration/validation purposes. Typical measures include: 

• Traffic counts or volumes. These often are reported for time intervals different than 
those required for model calibration and validation (five minutes versus hourly 
intervals). 

• Travel times. Travel times usually are reported at the movement, link, or roadway 
segment level; and it is up to the user to aggregate them at the corridor level and for 
different time periods. 

 
Cambridge Systematics has built a spreadsheet-based tool that incorporates the above functionality 
and interfaces with VISSIM to obtain lane, link, and detector information. The time-dependent data 
obtained from VISSIM are filtered, refactored, aggregated, and reformatted to be displayed in several 
spreadsheets inside the same workbook. The tool is able to average and combine simulation results 
from different iterations, time periods, and spatial locations; and then visualize this information using 
the capabilities of Excel. Figure 4-4 shows a time-space speed contour plot that has been populated 
automatically inside Excel by the data coming from the post-processor. The open-source technologies 
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we have used in the Cambridge Systematics computational engine are similar to SPSS or the 
R statistical language, which means that aggregation, statistical operations, and filtering are done 
simply and efficiently. The entire process is driven by the spreadsheet software itself, and all the data 
manipulations and statistical computations are done in the background. Implementing a statistical 
computational engine outside Excel proved to be always reliable and 50 times faster than doing the 
same computations using custom code in Excel VBA. 
 

 

Figure 4-5. Heatmap. Cambridge Systematics spreadsheet-based  
simulation results processor. 

(Source: Cambridge Systematics, Inc.) 

Disaggregate Tools 
Disaggregate tools read, store, and visualize individual trajectories, either from observed data or from 
simulation models. Trajectory files very often contain a large number of records that may not fit in a 
spreadsheet program or in memory. For example, simulating as many as 5,000 vehicles on a five-mile 
corridor generates more than 1 million record entries per hour when second-by-second positions are 
recorded. Therefore, the ability to window-in on a specific link or corridor is a useful feature that allows 
for faster computation and visualization. Calculating aggregate derivative performance measures, 
such as speed and density, is not a straightforward process; and minor implementation differences 
can result in inconsistencies. Visualization is an indispensable tool that allows the researcher to 
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understand vehicle interactions and vehicle movements, both at the individual vehicle level and at the 
aggregate link or corridor level. 
 

VTAPE 
Vehicle Trajectory Analysis System (VTAPE) is trajectory analysis software for processing and 
visualization of vehicle trajectories, either from observed or simulated data (Lu, Bin, and Scott 
Washburn. 2014. “Vehicle Trajectory Analysis System for Estimating HCM Compatible Performance 
Measures”. Presented at the 93rd TRB Annual Meeting, Washington, D.C.). The software has been 
developed by Dr. Scott Washburn at the University of Florida over the course of several years to 
support the calculation of Highway Capacity Manual (HCM) compatible performance measures from 
trajectories. VTAPE employs internally a uniform trajectory database that allows the software to apply 
the same analytical procedures for performance measurement and visualization, regardless of the 
source data format. The uniform data format is shown in table 4-1 below and contains information on 
vehicle ID, position, lane ID, and time among other attributes. If the input data format does not contain 
all the necessary fields, a custom reader is used that calculates the required parameters as the data 
are being read. VTAPE has the significant advantage to be able to calculate queue, delay, density, 
and other performance measures based on the exact definitions included in the HCM. The software 
has been developed using C#, .NET, and the Microsoft Windows Presentation Framework in a 
modular way that supports expandability. 

Table 4-1. Vehicle trajectory analysis system uniform database format. 

Property Data Type Description 

Vehicle ID Integer Vehicle identification number 

Time Double Time step identification number 

Position (Link) Double Distance traveled by the vehicle from the upstream end of the link 

Velocity Double Instantaneous velocity of the vehicle 

Acceleration Double Instantaneous acceleration of the vehicle 

Link ID Unsigned Integer Link identification number 

Link Length Double Link longitudinal length 

Lane ID Unsigned Integer Lane identification number 

Vehicle Length Double Vehicle longitudinal length 

Leader ID Integer Vehicle ID of the leader vehicle in car-following movement 

 
Source: Lu, Bin, and Scott Washburn. 2014. “Vehicle Trajectory Analysis System for Estimating HCM Compatible 
Performance Measures”. Presented at the 93rd Transportation Research Board (TRB) Annual Meeting, 
Washington, D.C. 
 
VTAPE is capable of visualizing trajectories in two-dimensional time-space and other plots, as shown 
in figure 4-6. Useful features include the ability to color code trajectory position based on vehicle 
speed and the capability of the user to click on a specific trajectory trace interactively to obtain 
additional information. 
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Figure 4-6. Graphs. Trajectory visualization in Vehicle Trajectory Analysis System. 
(Source: Lu, Bin, and Scott Washburn. “Vehicle Trajectory Analysis System  

for Estimating HCM Compatible Performance Measures”. Presented  
at the 93rd TRB Annual Meeting, Washington, D.C., 2014.) 

Trajectory Explorer 
Dr. Jorge Laval at Georgia Tech has developed a windows-based trajectory visualizer named 
Trajectory Explorer that is free to download and use (http://trafficlab.ce.gatech.edu/node/2001). 
Similarly to the tool developed by Dr. Washburn, trajectories are visualized in a time-space diagram 
and using color to visualize speed. The user can zoom-in and zoom-out interactively to take a closer 
look at specific locations and time-windows. This is a very useful feature that helps visually identifying 
vehicle movements at various levels of detail. In addition, the user can interactively specify cut-lines or 
rectangles for which the program calculates aggregate measures, such as density and flow. 
Figure 4-7 is a snapshot of the Trajectory Explorer Interface. Other advanced features include the 
ability to save data to text or bitmap files and the ability to derive the fundamental flow-density 
diagrams based on selected trajectories. 
 

http://trafficlab.ce.gatech.edu/node/2001
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Figure 4-7. Visualization. Trajectory explorer. 
(Source: http://trafficlab.ce.gatech.edu/sites/default/files/files/annimations/flash/te/tutorial2/ 

tutorial2.html). 

Cambridge Systematics’ Trajectory Engine 
The Cambridge Systematics trajectory engine uses an open-source spatiotemporal database to 
perform the following tasks: 

• Individual Trajectory Visualization (to plots or shapefiles). 

• Calculation of densities, flows, and aggregate trajectory visualizations. 

• Computations of various derivative measures, such as distances between vehicles, 
gaps a few seconds before a lane change happens, and trajectory similarity 
measures, such as the Fréchet distance explained in chapter 5. 

 
Figure 4-8 shows three visualizations from the trajectory engine, a trajectory plot on the left, a space-
time diagram showing the rate of lane changes per mile in a corridor in the top right, and a scatterplot 
showing speed versus acceleration derived from NGSIM data. 
 

http://trafficlab.ce.gatech.edu/sites/default/files/files/annimations/flash/te/tutorial2/tutorial2.html
http://trafficlab.ce.gatech.edu/sites/default/files/files/annimations/flash/te/tutorial2/tutorial2.html
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Figure 4-8. Charts. Cambridge Systematics computational engine visualizations. 
(Source: Cambridge Systematics, Inc.) 

PKU Trajectory Visualization System 
PKU is a trajectory visualization platform developed by Peking University for both macro- and 
micro-scale trajectory visualization and analysis. The developers have used the software to 
publish research papers on sparse trajectory exploration, trajectory timeline visualization, traffic 
jam analysis from GPS trajectories, traffic density rendering, and micro-behaviors analysis at the 
intersection level. Documentation and animation videos are presented on the Web site: 
http://vis.pku.edu.cn/trajectoryvis/en/index.html. From a pure visualization standpoint, PKU is the most 
advanced software we encountered allowing for multiple views of the same data in coordinated charts 
that are all synchronized. In figure 4-9, the micro-behavior of vehicles traveling an intersection is 
analyzed across several dimensions. Multiple vehicle paths are shown on the top left of the picture 
(section a), while the multidimensional parameter space of all vehicles is shown in section c. 
Specifically, in section c, each trajectory dimension, such as start time, total time, average speed, max 
speed, and acceleration, is a separate vertical axis. Subsequently, each trajectory is visualized as a 
multipart line that connects different values in each of the axes (dimensions) from left to right. The plot 
allows the user to see the variability of the data in each dimension and how different values are 
correlated with each other in the multi-dimensional trajectory property space. PKU is developed in 
C++ using the Qt visualization toolkit. Even though the software does not contain the custom-specific 
charts frequently used in simulation, we believe it is worth exploring for its diverse capabilities that 
cannot be found in trajectory software developed in our field. 
 

http://vis.pku.edu.cn/trajectoryvis/en/index.html
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Figure 4-9. Visualizations. PKU trajectory visualization system. 
(Source: Guo, Hanqi, et al. 2011. “TripVista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road 

intersection." Pacific Visualization Symposium (PacificVis), 2011 Institute of Electrical and Electronics Engineers (IEEE)) 
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Chapter 5 Validation Efforts 

In this section, we identify applications and cases where simulation models, algorithms, and logic have 
been calibrated and validated at the disaggregate trajectory level. Researching calibration, in 
conjunction with validation at the disaggregate level, is necessary because individual trajectories 
cannot be compared (or validated) on a one-to-one basis unless they belong to the same driver type. 
Performing calibration prior to validation ensures that the inputted car-following and lane-changing 
parameters are fitted to the properties of the observed trajectory. 

Trajectory Comparison Function for Validation 
When both trajectories correspond to the same time window, a straightforward measure to compare 
them is the sum of the square distances (or errors) between corresponding points. A more elaborate 
mathematical measure in the computational geometry field is the Fréchet distance, which can be 
loosely defined as the maximum distance between the two trajectories (Figure 5-1). According to 
Wikipedia, the Fréchet distance between two curves is the minimum length of an imaginary leash 
required to connect a dog (or vehicle 1) and its owner (or vehicle 2) constrained on two separate 
paths, as they move along their respective trajectories from one endpoint to another. For validation 
purposes and in contrast to the sum of square errors, the Fréchet distance has a straightforward 
interpretation and units. 
 

 

Figure 5-1. Illustration. Fréchet distance. 
(Source: http://www.win.tue.nl/~mdberg/Onderwijs/AdvAlg2013/Selected-CG-Problems.pdf.) 

Validating Algorithms and Logic 
It is common practice to compare the fit of a model against observed data using an objective function, 
such as root mean square error, the rho-squared coefficient of determination or other, assuming, 
implicitly, that a model with better fit has always a higher predictive power. Aside from the 
particularities in the data that are used to calibrate or validate a model, Dr. Treiber proposes that the 

http://www.win.tue.nl/%7Emdberg/Onderwijs/AdvAlg2013/Selected-CG-Problems.pdf
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fitting quality should be one of the criteria for assessing models and not the only one. Additional 
criteria include robustness, parsimony, and parameter orthogonality. Each of these criteria is 
explained in more detail below along with intradriver, and interdriver variations that have an impact to 
model fit. 

Robustness 
Sometimes, different random seeds of the same simulation result to a gridlock or exhibit significant 
variations in model outcomes while the average of the outcomes, nevertheless, constitutes an 
acceptable fit. Sensitivity tests are required to ensure that small variations in input parameters do not 
result in significant variations in simulation outputs. Otherwise, the predictive ability of such a sensitive 
model may be limited. 

Parsimony 
In statistics, there are tests for parsimoniousness that balance the number of parameters against fit 
quality, such as the likelihood-ratio tests. However, transportation engineers often tweak 
microsimulation parameters on a link-by-link basis to replicate certain traffic phenomena introducing 
implicitly additional parameters to the simulation model that are not behaviorally based. In general, 
between two models of the same fit, the one that depends on fewer parameters has higher predictive 
power. Therefore, introducing a large number of parameters to improve the fit to the base-year 
condition may result in an over-fitted model with limited predictive power. 

Parameter Orthogonality 
Microsimulation models often include many parameters with overlapping influence on driving behavior. 
When a single parameter modification changes various aspects of driving behavior, it makes 
calibration and validation harder. In contrast, in a model for which there is one parameter for each 
aspect of modeled behavior (parameter orthogonality), it is easier to determine the “all other things 
being equal” effects of a change. 

Intradriver Variations 
Every driver changes behavior based on how alert he or she is under different driving conditions, such 
as accidents, mandatory or discretionary lane changes. Therefore, estimating a single set of driver 
parameters for the entire journey may be an oversimplification. Intradriver variation can be 
incorporated endogenously into the model by introducing event-oriented parameter changes or time-
dependent adjustments (driving in the morning versus night). Intradriver variations may be one of the 
main reasons why even the best-calibrated car-following models have an average minimum error 
around 20 percent (Treiber, Martin, and Arne Kesting. 2013. “Microscopic Calibration and Validation of 
Car-Following Models–A Systematic Approach.” Procedia-Social and Behavioral Sciences 80). 
Another plausible reason may be that we do not identify and model properly driver’s anticipatory 
reactions to traffic past the leader vehicle or to lane-changing maneuvers. 

Interdriver Variations 
These variations pertain to differences in the driving behavior of the entire population and have to do 
with physiological characteristics, vehicle characteristics, or localized attitudes that differentiate drivers 
between different states, cities, and countries. Microsimulation models often assume a universal 
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distribution of driver and vehicle characteristics neglecting such differences. Floating Car data from the 
NDS can be used to obtain insights on the observed distribution of driver characteristics. In addition to 
establishing the distribution of driver parameters, it also is important to acknowledge the correlations 
between parameter values that pertain to the same driver type (i.e., an aggressive driver may have a 
higher desired speed and acceleration targets. 

Calibrating and Validating Car-Following Models 
Researchers have used two types of data to calibrate and validate individual trajectories from 
simulation models: 

1. Extended Floating Car data that contain the position, speed, and acceleration of a vehicle 
pair. Such data are collected by instrumented vehicles that carry a GPS device and a 
forward-facing radar that records the gap between the instrumented vehicle and the leader. 

2. Trajectory information of all the vehicles in the traffic stream, such as the NGSIM dataset. 
Having a trajectory for all the vehicles in the traffic stream does not necessarily mean that 
driver parameters or driver type can be estimated for all the drivers since some drivers may 
encounter only one traffic condition (e.g., free flow) that does not give additional information 
on their behavior. 

 
A significant number of researchers have developed a successful methodology to calibrate car-
following models using NGSIM or Extended Floating Car data. Punzo and Simonelli were among the 
first to calibrate car-following models using trajectory data obtained from individual vehicles (Punzo, 
Vincenzo, and Fulvio Simonelli. 2005. “Analysis and comparison of microscopic traffic flow models 
with real traffic microscopic data.” Transportation Research Record: Journal of the Transportation 
Research Board 1934.1: 53-63). Their general methodology and the choice of distance and objective 
functions have been followed by subsequent researchers, such as Soria, Elefteriadou, and Kondyli, 
and form the basis of this section (Soria, Irene, Lily Elefteriadou, and Alexandra Kondyli. 2014. 
“Assessment of car-following models by driver type and under different traffic, weather conditions 
using data from an instrumented vehicle.” Simulation Modelling Practice and Theory 40: 208-220). 
Soria et al investigated how different car-following models, incorporated in AIMSUN, CORSIM, and 
MITSIM, perform in different operational conditions, including congestion or weather (rain or clear 
sky). Their study provided insights to the relationship between car-following parameters and different 
driver types, a relationship that, according to the authors, had attracted limited research. 
 
Sanster, Rakha, and Du, in a recent study, and for the first time, used NDS data to calibrate and 
compare four different car-following models (Rakha, Hesham, John Sangster, and Jianhe Du. 2013. 
Naturalistic Driving Data for the Analysis of Car-Following Models. No. VT-2010-01). Their study 
focused on the cost and benefits of using naturalistic data, and concluded that “any project seeking to 
use naturalistic data should plan for a complex and potentially costly data reduction process to extract 
mobility data.” Specifically, the radar detection technology used for data collection was found 
unreliable, requiring manual verification using the forward-facing video camera to extract trajectory 
segments, for which a complete and reliable set of measurements existed. In addition, speed 
measurements coming from the vehicle network (OBD port) were found more reliable from GPS data 
that tended to oscillate. As a result, only 50 percent of the corridor-specific extracted trajectories were 
used for analysis. Despite problems with the reliability of the measurements, the authors noted that 
the unique combination of driver information, coupled with the vast amounts of recorded data, can 



Chapter 5 Validation Efforts 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology  
Intelligent Transportation Systems Joint Program Office 

ATDM Trajectory-Level Validation—State of the Practice—Final Report | 42 

shed light on a number of important topics, such as driver heterogeneity (interdriver variation), and the 
relationship between driver behavior and roadway type (intradriver variation). 
After cleaning the data, the authors used a methodology similar, but not identical, to Punzo and 
Treiber, to calibrate and validate four car-following models using NDS trajectory data. They concluded 
that the Rakha-Pasumarthy-Adjerid (RPA) model had the best model fit and was the most capable in 
explaining the variability of behavior in the dataset. An example of driver variability from their research 
is shown in figure 5-2 below. Black lines represent the combinations of spacing and speed in the 
dataset. Grey lines represent model estimates from the best-fit car-following model. Based on this 
figure, the authors concluded that the observed variability in the relationship between speed and 
spacing can only be partially replicated by model results. 
 

 

Figure 5-2. Diagram. Driver interaction diagram showing spacing versus speed. 
(Source: Rakha, Hesham, John Sangster, and Jianhe Du. 2013. Naturalistic Driving Data for the 

Analysis of Car-Following Models. No. VT-2010-01.) 

 
Very recently, Kesting and Treiber built on the methodology of Punzo and Simonelli and developed a 
detailed methodological framework for calibrating car-following models (Kesting, Arne, and Martin 
Treiber. 2008. “Calibrating car-following models by using trajectory data: Methodological study.” 
Transportation Research Record: Journal of the Transportation Research Board 2088.1: 148-156). 
The rest of this section will borrow heavily from their thorough approach, which built and expanded 
previous research. Specifically, Kesting and Treiber investigated the minimum number of traffic states 
required for fully calibrating a car-following model against a given trajectory, the temporal resolution of 
the input data, and the impact of the form of the trajectory comparison function on the results. 
The number of traffic state regimes contained in the data should relate to the traffic state regimes 
modeled by the car-following model at hand (Gipps, Optimal Velocity, or other). Different 
microsimulation models describe driver behavior through a different set of regimes; all of which must 
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be contained in the observed data to perform calibration. In contrast, and if driver type can be 
somewhat inferred, trajectories pertaining to any combination of traffic states can be validated using 
the Fréchet or other distance measure. Even though clustering techniques can be used to group 
similar trajectories, trajectory similarity does not necessarily imply driver type similarity because there 
are situations, such as stop-and-go traffic, in which there can be relatively little differentiation between 
drivers. Rather, the clustering mechanism should be able to identify similarity of responses under 
similar conditions pertaining to the traffic regimes modeled. In table 5-1 below, we show the different 
driver regimes of the Intelligent Driver Model (IDM) model and the associated model parameter of 
each regime. A notable characteristic of the IDM is that all of its parameters are orthogonal, with each 
parameter describing one particular aspect of driver behavior only. The column “Identification Criteria” 
in the table below depicts how different driving regimes can be identified in the raw data. This is a 
data-mining step that is necessary in order to identify trajectories that can be used for estimating all 
the parameters of the IDM. 

Table 5-1. Driving regimes for the intelligent driver model. 

Intelligent Driver 
Model Parameter Driving Regime Identification Criteria 

Desired speed Cruising in free traffic 
conditions 

Speed and the time gap are above data-driven limits 
vc and Tc, respectively, and the absolute acceleration 
is below a limit ac. 

Maximum acceleration Free Acceleration, 
(nonsteady state flow) 

If the time gap is above Tc, the acceleration above ac, 
and the conditions for cruising are not fulfilled. 

Minimum space gap Creeping and Standing 
Traffic 

Essentially standing if the gap s < sc. 

Maximum desired 
deceleration 

Approaching (nonsteady 
state flow) 

If v > vl, the time gap s/v > Tc, and the kinematic 
deceleration (v − vl )2/ (2s ) > ac. 

Desired time gap Steady state car following  T < Tc and none of the above conditions applies. 

Source: Treiber, Martin, and Arne Kesting. 2013. “Microscopic Calibration and Validation of Car-Following 
Models—A Systematic Approach.” Procedia-Social and Behavioral Sciences 80: 922-939. 
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Objective Function 
The most commonly used method for model calibration involves making model runs to obtain 
complete simulated trajectories, which are then compared to the corresponding observed data using 
an objective function that is a function of the sum of the square differences/errors (SSE). The measure 
in SSE need not necessarily be distance between the corresponding points of the two trajectories; it 
also can be the gap between the leader and follower, speed, or acceleration. Nevertheless, distance 
measures in the objective function are favored because they can more easily capture all aspects of 
driver behavior, such as the minimum distance between vehicles while standing. The choice of 
objective function is important because it can highlight or obscure model responses under different 
traffic regimes. For example, if we are to use gaps in the objective function, then the longer gaps at 
free flow speeds are going to dominate the cumulative SSE value giving relative little weight to gaps 
related to stop-and-go traffic. Taking the logarithm of the gaps reduces the impact of the longer gaps, 
and at the same time dampens the effect of outliers in the observed data. 
 
Minimizing the objective function identifies the combination of parameter values in the car-following 
model that minimize the distance between the observed and simulated trajectory, as shown for 
example in the top right corner of Figure 5-3. In more detail in Figure 5-3, Treiber and Kesting show 
the ‘fitted landscape,’ the combinations of car-following parameters that result in the lowest value of 
the objective function. Each plot in this figure shows how the combination of two specific car-following 
model parameters affects the overall fit of the simulated trajectory. For example, the bottom left chart 
shows how the different combinations of desired speed and deceleration impact the value of the SSE. 
Blue and purple areas in the plot have the lowest SSE values of less than 100 square meters, while 
red areas have an SSE greater then 500. A horizontal line has been drawn that shows the value of the 
deceleration parameter that minimizes the SSE across all charts at the bottom. The modeler can infer 
from the collection of plots below not only the best fitted values, but also the sensitivity around the 
minimum and the range of parameter values that result to a solution close to the optimum. The 
following plots also can give a quantitative answer to the question of simulating a different driver that 
has all the same characteristics but one. 
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Figure 5-3. Graphs. Trajectory calibration landscape. 
(Source: Treiber, Martin, and Arne Kesting. 2013. “Microscopic Calibration and Validation of Car-

Following Models— A Systematic Approach.” Procedia-Social and Behavioral Sciences 80: 922-939.) 

Time Resolution 
The sampling rate used in comparing observed and simulated trajectories is important for data 
collection purposes and for calculating an SSE value that is sensitive to differences. NGSIM and 
detailed floating car data have a sampling rate of 10 Hz, while other datasets such as the NDS use 
1 Hz for the GPS component. Treiber and Kesting have experimented with different sampling rates by 
eliminating portions of the data. They conclude that, as far as car-following calibration is concerned, a 
sampling rate of 1 Hz yields the same parameters with a sampling rate of 10 Hz, including the same 
fitting landscape presented in Figure 5-3. This is an important conclusion for both calibration and 
validation because, if the error in fitting a trajectory is the same for sampling rates less than or equal to 
1 Hz, datasets such as the NDS or others with a similar sampling rate can be used for validation and 
calibration purposes without biasing the results. Table 5-2 contains the fitted parameters for different 
sampling intervals with each column pertaining to the car-following parameters under a specific 
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sampling interval. It is clear from the individual values, as well as the overall fit in the last row, that 
sampling rates up to 1 second yield the same model results. 

Table 5-2. Impact of sampling rate on calibrated parameters. 

 Sampling Interval (Seconds) 

 0.1 0.2 1.0 2.0 5.0 

Desired speed (m/s) 16.1 16.2 16.3 15.8 14.8 

Time gap (s) 1.20 1.21 1.22 1.12 0.87 

Minimum space gap (m) 1.53 1.54 1.58 2.05 3.12 

Maximum acceleration (m/s2) 1.39 1.38 1.37 1.35 1.24 

Minimum desired deceleration (m/s2) 0.65 0.65 0.66 0.76 0.28 

Error percentage 17.4 17.2 17.7 19.9 32.2 

 
Source: Treiber, Martin, and Arne Kesting. 2013. “Microscopic Calibration and Validation of Car-Following 
Models—A Systematic Approach.” Procedia-Social and Behavioral Sciences 80: 922-939. 

Validating Lane-Change Models at the Trajectory Level 
The fact that individual trajectories cannot be compared unless they belong to the same driver type 
also holds when investigating lane changing in addition to car following. Algorithmic parameters of the 
lane-changing model often depend on certain parameters of the car-following model, making lane 
change conditional to car following. Therefore, the proper way to calibrate and validate a lane-
changing model would be to perform the calibration of the car-following parameters first, and the 
calibration of the lane-changing parameters later. Lane-changing trajectory tracing tests can be 
constructed as follows: 

• A vehicle’s car-following parameters are calibrated to same-lane observed data. 

• A vehicle’s micro-environment (surrounding vehicles) in the same and adjacent lanes 
is replicated exactly based real observations. 

• The vehicle’s lane-changing behavior is compared against observed data. 
Practically, this means that the first lane change the vehicle makes is compared 
against observed data. 

Trajectory Clustering 
In general, clustering is the task of grouping a set of objects in such a way that objects in the same 
group are more similar to each other than those in other groups (clusters). Trajectories due to their 
spatiotemporal nature are more complex than simpler data types, such as vectors or tuples for which 
there is a rich literature of clustering methods. In the next paragraphs, we will describe some methods 
for clustering that have been adapted for trajectory analysis. 
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Many of the popular clustering methods rely on the notion of similarity or distance between objects. 
For example, in clustering a vector of attributes, the similarity or distance measure can be the 
Euclidian distance. Such a measure when applied to vehicle trajectory data can reveal drivers with the 
same spatiotemporal profile along the entire route that sped, decelerated, and accelerated 
approximately at the same time. However, given that vehicle trajectories are both constrained and 
influenced by the position, velocity, and acceleration of the surrounding vehicles, such a clustering 
may not reveal significant information about driver types, given the fact that the same driver may 
choose a completely different trajectory if the circumstances are different. If, on the other hand, the 
distance measure between trajectories is elaborate enough to encapsulate the inner structure of the 
data and the complete environment of driver decisions, a more insightful or behavioral clustering can 
arise. Independent of the choice of the distance measure, which will be analyzed in more detail in a 
following section, popular clustering algorithms that have been applied in other fields and are breaking 
into our practice include: 

• K-means is a process that partitions all input objects into k clusters, where k is a 
parameter defined by the user. This is a heuristic method that attempts to find those 
k clusters that minimize intra-cluster difference at the same time that they maximize 
inter-cluster difference. The method starts by randomly selecting a partitioning and 
progressively refining it through iterations in which objects are swapped between 
clusters. K-means is probably the most popular clustering technique with several 
open-source machine learning and data-mining packages implementing it, including 
R, scikit-learn (Python), or Octave. 

• Hierarchical clustering organizes objects into a multilevel tree structure of clusters 
and subclusters. The final output of the method is a dendrogram, in which each 
cluster is a node and subclusters are leafs to the node they belong. An example of 
such a dendrogram can be constructed by clustering the sequential letters 
{b,c,d,e,f,g,h,i}. Adjacent letters are more similar to each other and are clustered 
together (e.g., b and c together to form bc and d and e together to form de). The 
resulting clusters are clustered again in a hierarchical fashion (i.e., bc together with 
de) to form another level of clustering and so on until we reach at the root of the 
dendrogram. 

• Density-based clustering identifies clusters of objects based on a similarity threshold 
epsilon without imposing a spherical shape to the resulting clusters, such as the 
k-means algorithm. As a result, clusters are formed in areas of higher density, while 
points in sparse areas separate the clusters among them. According to Wikipedia, 
DBSCAN and OPTICS are two of the most popular clustering algorithms currently 
available. Support for such algorithms exists in R, scikit-learn (Python), and ELKI 
(Java). 

 
Popular clustering algorithms such as the ones described above need to convert trajectories into 
multidimensional vectors by means of a suitable distance function in order to operate. However, in our 
domain, two trajectories can be considered similar (or belonging to the same driver type) even if they 
do not fully coincide in space, have similar shapes, or have common start or end points. Vice versa, 
two nearly identical trajectories may not correspond to the same drive type if they are derived from a 
different environment or if they are derived from a traffic regime, such as stop-and-go traffic where 
differences between driver behaviors are minimized. 
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A Euclidian distance measure can be used only when the time window of comparison is fixed to 
ensure the same number of elements is being compared. Variations of the Euclidian distance 
measure have been used in trajectory tracing tests, in which the observed and simulated vehicles 
follow exactly the same path. More elaborate distance functions between trajectories that enable 
comparisons between trajectories of different length or time window include: 

• Dynamic Time Warping (DTW) is a method that can be used when trajectories differ 
in length. DTW allows a sequence to “stretch” or “shrink” in order to better fit with 
another sequence. 

• Longest Common Subsequence (LCSS), similar to the previous method, allows time 
series to be “stretched,” while allowing some elements of the sequences to be 
unmatched. 

• Edit Distance on Real Sequences (EDR) is based on applications in bioinformatics 
that quantify the difference between two strings. EDR calculates the minimum 
number of insertions, deletions, and replacements in order for two strings to become 
identical. 

 
Zhao et al. compare Euclidean, DTW, LCSS measures and clustering algorithms on the NGSIM 
Lankershim dataset (http://dcslab.cse.unt.edu/~zzm/FR.docx). CLUTO, the clustering software used, 
contains different classes of clustering algorithms, all of which were applied to NGSIM data 
(http://glaros.dtc.umn.edu/gkhome/views/cluto/). The researchers first clustered trajectories based on 
origin and destination into four distinct groups, and then applied three different similarity measures 
using three different clustering algorithms. Their results indicate that DTW and LCSS produced better 
clustering schemata compared to Euclidian distance. A more extensive comparison among six 
distance measures and seven clustering algorithms that was done by Morris and Triventi also 
highlighted the importance of a proper distance function in identifying a set of clusters (B. Morris and 
M. Trivedi, 2009. “Learning trajectory patterns by clustering: Experimental studies and comparative 
evaluation,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 
pages 312 to 319). In fact, based on the results of Triventi, the choice of distance function is often 
more important that the choice of clustering algorithm (i.e., k-means or other). 
 
A selection of trajectory specific algorithms that build on top of k-means or density-based clustering 
methods is briefly discussed below: 

• CenTR-I-FCM is a clustering algorithm that is based on k-means and transforms 
trajectories into vectors (Pelekis, Nikos, et al. 2009. "Clustering trajectories of moving 
objects in an uncertain world." Data Mining. ICDM'09. Ninth IEEE International 
Conference on. IEEE). The algorithm considers uncertainty, which can come from 
noisy data or sampling errors by allowing each data element to belong to different 
clusters by a certain probability of membership. For each cluster, the centroid 
trajectories are being produced and used in identifying patterns visually. Even though 
CenTR-I-FCM is a complex algorithm involving many steps, it is efficient and it has 
the advantage that clusters may not have the spherical shape of the traditional 
k-means algorithm. 

• T-OPTICS is a clustering algorithm that is based on the vector-based OPTICS 
algorithm, a powerful and popular density-based clustering algorithm (Nanni, Mirco, 
and Dino Pedreschi. 2006. “Time-focused clustering of trajectories of moving 
objects." Journal of Intelligent Information Systems 27.3: 267-289; Ankerst, Mihael, et 

http://dcslab.cse.unt.edu/%7Ezzm/FR.docx
http://glaros.dtc.umn.edu/gkhome/views/cluto/
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al. 1999. "Optics: Ordering points to identify the clustering structure." ACM Sigmod 
Record. Vol. 28. No. 2. ACM). T-OPTICS is more efficient than hierarchical clustering 
methods and has the ability to construct clusters of arbitrary shape that are robust 
with respect to noise in the data. Furthermore, an algorithm for temporal focusing is 
included in T-OPTICS and aimed at finding the best time intervals for clustering. This 
is useful because two trajectories that are otherwise very different can be very similar 
in a specific time window. 

• TRACLUS is a trajectory clustering algorithm aimed at discovering local patterns in 
portions of trajectories (Li, Zhenhui, et al. 2010. “Incremental clustering for 
trajectories.” Database Systems for Advanced Applications. Springer Berlin 
Heidelberg). To achieve this, trajectories are simplified into a number of line 
segments or subpaths and clustered in so called micro-clusters. Micro-clusters are 
then used to store compact summaries of similar trajectory line segments. TRACLUS 
uses the density-based clustering methodology DBSCAN (Birant, Derya, and Alp 
Kut. 2007. “ST-DBSCAN: An algorithm for clustering spatial–temporal data." Data & 
Knowledge Engineering 60: 208-221). 

• FlowScan is an algorithm for discovering popular routes from trajectory data that 
have not been mapped to a network. A “hot route” is a general traffic flow pattern of 
nearby moving objects not necessarily adjacent. 

 
Most of the algorithms presented above also can be used to find a representative trajectory for each 
cluster that can be either artificial or selected from the sample. Such a representative trajectory can be 
used to make conclusions about driver behavior and vehicle dynamics of the particular population it 
represents. 
 
Clustering methods are becoming more and more popular in our field. In the last 10 years, there has 
been some notable research in trajectory clustering from the perspective of traffic simulation. Higgs 
et al. used a sample of 20 different drivers to identify car-following behaviors based on eight state-
action variables: the longitudinal acceleration, the lateral acceleration, the yaw rate, the vehicle speed, 
the lane offset, the yaw angle, the range, and the range rate (Higgs, Bryan, and Montasir Abbas. 
2014. “Segmentation and Clustering of Car-Following Behavior: Recognition of Driving Patterns”: 1-
10). The results of this methodology are state-action clusters that define the driving pattern of drivers. 
The characteristics and frequency of recognized driving patterns are provided in the paper, along with 
the corresponding modeling parameters of each pattern from a traffic simulation perspective. Higgs 
et al., in a complementary paper to the previous one, identified the combination of state variables 
(speed, lane offset, yaw angle, range, and range rate) and action variables (longitudinal acceleration, 
lateral acceleration, and yaw rate) that constitute clusters using discriminant analysis (Higgs, Bryan, 
and Montasir Abbas. 2014. "Identification and classification of state-action clusters of car-following 
behavior." Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on. 
IEEE). In another paper, Higgs et al. study intra-driver variations of car-following behavior by braking 
up car-following periods and clustering those that are similar together (Higgs, Bryan, and Montasir 
Abbas. 2013. “A two-step segmentation algorithm for behavioral clustering of naturalistic driving 
styles.” Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE Conference on. 
IEEE). 
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Chapter 6 Summary 

Current approaches to develop, calibrate, and validate simulation tools are based on time-consuming 
approaches that use aggregate-level field data, such as 15-minute averages. Aggregate link flow or 
travel-time data may be insufficient to calibrate or validate simultaneously the four major components 
that comprise a microsimulation model, namely: 1) car-following; 2) lane-changing; 3) route choice; 
and 4) time-dependent demand. When using aggregate data, the model calibration space is a high-
dimensional field that provides many options to achieve the same model fit. For example, to match 
modeled flow with the observed count on a link, the modeler can change the demand, or route choice, 
or car-following parameters that affect travel time on the corridor. All of these alternative approaches 
can improve the goodness of fit of the model. However, if the search for the best fit is not systematic 
and supported with data that can be used to calibrate each aspect of the microsimulation model in 
isolation, there is the danger of overfitting the model to observed base year conditions. Unintentionally, 
and in search of the best fit, the modeler may modify car-following or lane-changing parameters in a 
way that unrealistic driver behavior at the trajectory level is being produced involving, for example, too 
many transitions from acceleration to deceleration or lane changes. Without the proper trajectory 
analysis tools and the proper validation metrics at the trajectory level, modelers may not have way to 
measure the impacts of the calibration process on driver behavior and the resulting energy 
consumption or emissions. 
 
In this document, we have researched trajectory datasets that have been collected since 1980 and 
have been researched by transportation professionals. For the purpose of this study, complete 
information for 100 percent of the traffic stream is required in order to reconstruct not only the 
movement of a single instrumented vehicle, but also the movement of all the vehicles around it that 
constrain or stimulate driver behavior. When complete trajectory information exists, researchers can 
study conditions and precursor events to lane-changing maneuvers on the same and adjacent lanes 
to develop causal (deterministic or probabilistic) models of driver behavior. Absence of information on 
adjacent lanes prohibits the study of lane changes at the trajectory level, except at an aggregate level 
that describes lane changing in statistical terms over the entire driver population. Trajectory 
observations that do not span the entire trip of the instrumented vehicle may not contain all the 
necessary information to gauge the purpose of a lane change (mandatory or discretionary). The study 
of lane changing from origin to destination requires datasets that we currently do not have in our 
disposal. Nevertheless, there is still a lot to mine from existing NGSIM and other trajectory datasets 
according to our stakeholders. The new naturalistic types of data hold significant promise provided 
that lane-changing maneuvers can be reliably identified. 
 
The study of car following is less data intensive than lane changing because it does not require 
vehicle positions on the adjacent lanes. This is because most car-following equations relate driver 
acceleration to the gap, speed, and acceleration of the leader vehicle on the same lane. As a result, 
calibrating a car-following model can be done with a dataset containing positions of the instrumented 
vehicle and its leader, a dataset that is often obtained though a GPS and a radar device. The 
Naturalistic Driving Dataset, unlike datasets obtained by video detection, can provide insights about a 
driver’s car-following behavior in a variety of conditions, including time of day, incident, or weather and, 
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therefore, allow the study of driver behavior among a large population of drivers whose demographics 
are known. 
 
Trajectory collection equipment and trajectory processing techniques continually advance, making it 
cheaper now to collect vehicle positions with an accuracy of a few feet that is necessary to determine 
lane-changing and car-following dynamics. GPS devices that use a ground base station, in addition to 
satellite information, provide increased accuracy at low cost. In the section of Existing Trajectory 
Collection Methods and Tools, we researched GPS technologies, radar, video detection, and 
unmanned aerial vehicles in extracting trajectory information. Video detection is the only method to 
provide trajectories for 100 percent of the traffic stream. However, even though significant 
advancements have been made in the last 10 years, advances that have resulted in the 
commercialization of the technology, a considerable amount of resources still needs to be committed 
to apply video detection in this project. 
 
The almost ubiquitous GPS sensors in smartphones have propagated the amount of trajectory data 
that are collected from individuals or commercial vehicle fleets. New types of databases called 
spatiotemporal databases have been developed to store and query trajectory data. Researchers in 
the transportation field have developed software that processes vehicle trajectories, such as the ones 
coming from NGSIM, and allows the visualization and computation of a number of important metrics. 
The Validation Processes and Tools section introduces a number of such trajectory processing tools 
describing their capabilities, software framework, and limitations. 
 
Finally, the section on Validation Efforts describes the complexity of the trajectory validation problem. 
Disaggregate trajectory validation requires that the same driver type operates the same vehicle in the 
same traffic environment. Recent car-following research efforts that have identified driver types by 
virtue of calibration are reviewed to obtain insights of how well an observed and simulated trajectory 
can match. Transferability issues between sites and traffic flow conditions make it harder to validate 
simulated trajectories unless trajectory data are collected for the same site for which a simulation 
model exists. In such a case, individual trajectories can be validated by performing trajectory-tracing 
tests, a technique that models a single vehicle in a completely controlled environment dictated by the 
observed trajectories of the surrounding vehicles. In addition to the disaggregate tracing tests, 
aggregate validation tests that compare aggregate measures from the site-specific simulated and 
observed trajectories also can be conducted and can reveal differences in driving patterns that 
traditional validation methods cannot uncover. 
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APPENDIX A.   List of Acronyms 
 
AMS Analysis, Modeling and Simulation 
ATDM Active Transportation and Demand Management 
BSM Basic Safety Message 
Caltrans California Department of Transportation 
COA Certificate of Authorization 
CORS Continuously Operating Reference Stations 
DGPS Differential GPS 
DMA Dynamic Mobility Applications 
DTA Dynamic Traffic Assignment 
DTW Dynamic Time Warping 
EDR Edit Distance on Real Sequences 
FAA Federal Aviation Administration 
FHWA Federal Highway Administration 
fps Frame per second 
GPS Global Positioning System 
HCM Highway Capacity Manual 
ICM Integrated Corridor Management 
IDM Intelligent Driver Model 
IEEE Institute of Electrical and Electronics Engineers 
LCSS Longest Common Subsequence 
LIDAR Light Detection And Ranging 
NDS Naturalistic Driving Study 
NGSIM Next Generation SIMulation 
NMEA National Marine Electronics Association 
NOAA National Oceanic and Atmospheric Administration 
OD Origin-Destination 
OEM Original Equipment Manufacturers 
OPUS Online Positioning User Service 
RPA Rakha-Pasumarthy-Adjerid 
SAVME System for Assessment of the Vehicle Motion Environment 
SHRP Strategic Highway Research Program 
SQL Structured Query Language 
SSAM Surrogate Safety Assessment Model 
SSE Sum of Square Errors 
STOL Short Take-Off and Landing 
SUV Sport Utility Vehicle 
TMC Traffic Message Channel 
TRB Transportation Research Board 
UAV Unmanned Aerial Vehicles 
USDOT U.S. Department of Transportation 
VMT Vehicle Miles Traveled 
VTAPE Vehicle Trajectory Analysis System 
WAAS Wide Area Augmentation System 
WSDOT Washington State Department of Transportation 
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